Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800173856> ?p ?o ?g. }
Showing items 1 to 97 of
97
with 100 items per page.
- W2800173856 endingPage "7" @default.
- W2800173856 startingPage "1" @default.
- W2800173856 abstract "Prenatal screening generates a great amount of data that is used for predicting risk of various disorders. Prenatal risk assessment is based on multiple clinical variables and overall performance is defined by how well the risk algorithm is optimized for the population in question. This article evaluates machine learning algorithms to improve performance of first trimester screening of Down syndrome. Machine learning algorithms pose an adaptive alternative to develop better risk assessment models using the existing clinical variables. Two real-world data sets were used to experiment with multiple classification algorithms. Implemented models were tested with a third, real-world, data set and performance was compared to a predicate method, a commercial risk assessment software. Best performing deep neural network model gave an area under the curve of 0.96 and detection rate of 78% with 1% false positive rate with the test data. Support vector machine model gave area under the curve of 0.95 and detection rate of 61% with 1% false positive rate with the same test data. When compared with the predicate method, the best support vector machine model was slightly inferior, but an optimized deep neural network model was able to give higher detection rates with same false positive rate or similar detection rate but with markedly lower false positive rate. This finding could further improve the first trimester screening for Down syndrome, by using existing clinical variables and a large training data derived from a specific population." @default.
- W2800173856 created "2018-05-17" @default.
- W2800173856 creator A5021993986 @default.
- W2800173856 creator A5034469014 @default.
- W2800173856 creator A5040111812 @default.
- W2800173856 creator A5064494773 @default.
- W2800173856 creator A5090475829 @default.
- W2800173856 date "2018-07-01" @default.
- W2800173856 modified "2023-09-26" @default.
- W2800173856 title "Evaluation of machine learning algorithms for improved risk assessment for Down's syndrome" @default.
- W2800173856 cites W2011278349 @default.
- W2800173856 cites W2014317722 @default.
- W2800173856 cites W2041451197 @default.
- W2800173856 cites W2047066646 @default.
- W2800173856 cites W2065354436 @default.
- W2800173856 cites W2079224763 @default.
- W2800173856 cites W2081344281 @default.
- W2800173856 cites W2085481869 @default.
- W2800173856 cites W2085809389 @default.
- W2800173856 cites W2087600997 @default.
- W2800173856 cites W2143237564 @default.
- W2800173856 cites W2161920802 @default.
- W2800173856 cites W2236989771 @default.
- W2800173856 cites W2318567960 @default.
- W2800173856 cites W2462899390 @default.
- W2800173856 cites W2548435165 @default.
- W2800173856 cites W2561981131 @default.
- W2800173856 cites W2718294537 @default.
- W2800173856 cites W2736590473 @default.
- W2800173856 cites W2803212018 @default.
- W2800173856 cites W3101749733 @default.
- W2800173856 doi "https://doi.org/10.1016/j.compbiomed.2018.05.004" @default.
- W2800173856 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29758452" @default.
- W2800173856 hasPublicationYear "2018" @default.
- W2800173856 type Work @default.
- W2800173856 sameAs 2800173856 @default.
- W2800173856 citedByCount "18" @default.
- W2800173856 countsByYear W28001738562018 @default.
- W2800173856 countsByYear W28001738562020 @default.
- W2800173856 countsByYear W28001738562021 @default.
- W2800173856 countsByYear W28001738562022 @default.
- W2800173856 countsByYear W28001738562023 @default.
- W2800173856 crossrefType "journal-article" @default.
- W2800173856 hasAuthorship W2800173856A5021993986 @default.
- W2800173856 hasAuthorship W2800173856A5034469014 @default.
- W2800173856 hasAuthorship W2800173856A5040111812 @default.
- W2800173856 hasAuthorship W2800173856A5064494773 @default.
- W2800173856 hasAuthorship W2800173856A5090475829 @default.
- W2800173856 hasConcept C11413529 @default.
- W2800173856 hasConcept C119857082 @default.
- W2800173856 hasConcept C12267149 @default.
- W2800173856 hasConcept C140146324 @default.
- W2800173856 hasConcept C154945302 @default.
- W2800173856 hasConcept C16910744 @default.
- W2800173856 hasConcept C199360897 @default.
- W2800173856 hasConcept C2908647359 @default.
- W2800173856 hasConcept C41008148 @default.
- W2800173856 hasConcept C50644808 @default.
- W2800173856 hasConcept C58489278 @default.
- W2800173856 hasConcept C71924100 @default.
- W2800173856 hasConcept C95922358 @default.
- W2800173856 hasConcept C99454951 @default.
- W2800173856 hasConceptScore W2800173856C11413529 @default.
- W2800173856 hasConceptScore W2800173856C119857082 @default.
- W2800173856 hasConceptScore W2800173856C12267149 @default.
- W2800173856 hasConceptScore W2800173856C140146324 @default.
- W2800173856 hasConceptScore W2800173856C154945302 @default.
- W2800173856 hasConceptScore W2800173856C16910744 @default.
- W2800173856 hasConceptScore W2800173856C199360897 @default.
- W2800173856 hasConceptScore W2800173856C2908647359 @default.
- W2800173856 hasConceptScore W2800173856C41008148 @default.
- W2800173856 hasConceptScore W2800173856C50644808 @default.
- W2800173856 hasConceptScore W2800173856C58489278 @default.
- W2800173856 hasConceptScore W2800173856C71924100 @default.
- W2800173856 hasConceptScore W2800173856C95922358 @default.
- W2800173856 hasConceptScore W2800173856C99454951 @default.
- W2800173856 hasLocation W28001738561 @default.
- W2800173856 hasLocation W28001738562 @default.
- W2800173856 hasOpenAccess W2800173856 @default.
- W2800173856 hasPrimaryLocation W28001738561 @default.
- W2800173856 hasRelatedWork W1996541855 @default.
- W2800173856 hasRelatedWork W2012689841 @default.
- W2800173856 hasRelatedWork W2023081810 @default.
- W2800173856 hasRelatedWork W2071508803 @default.
- W2800173856 hasRelatedWork W2793421500 @default.
- W2800173856 hasRelatedWork W2798481441 @default.
- W2800173856 hasRelatedWork W3111119525 @default.
- W2800173856 hasRelatedWork W3195168932 @default.
- W2800173856 hasRelatedWork W4280641190 @default.
- W2800173856 hasRelatedWork W4316658362 @default.
- W2800173856 hasVolume "98" @default.
- W2800173856 isParatext "false" @default.
- W2800173856 isRetracted "false" @default.
- W2800173856 magId "2800173856" @default.
- W2800173856 workType "article" @default.