Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800232755> ?p ?o ?g. }
- W2800232755 endingPage "1173" @default.
- W2800232755 startingPage "1164" @default.
- W2800232755 abstract "Atomically thin two-dimensional (2D) semiconductors have presented a plethora of opportunities for future optoelectronic devices and photonics applications, made possible by the strong light matter interactions at the 2D quantum limit. Many body interactions between fundamental particles in 2D semiconductors are strongly enhanced compared with those in bulk semiconductors because of the reduced dimensionality and, thus, reduced dielectric screening. These enhanced many body interactions lead to the formation of robust quasi-particles, such as excitons, trions, and biexcitons, which are extremely important for the optoelectronics device applications of 2D semiconductors, such as light emitting diodes, lasers, and optical modulators, etc. Recently, the emerging anisotropic 2D semiconductors, such as black phosphorus (termed as phosphorene) and phosphorene-like 2D materials, such as ReSe2, 2D-perovskites, SnS, etc., show strong anisotropic optical and electrical properties, which are different from conventional isotropic 2D semiconductors, such as transition metal dichalcogenide (TMD) monolayers. This anisotropy leads to the formation of quasi-one-dimensional (quasi-1D) excitons and trions in a 2D system, which results in even stronger many body interactions in anisotropic 2D materials, arising from the further reduced dimensionality of the quasi-particles and thus reduced dielectric screening. Many body interactions have been heavily investigated in TMD monolayers in past years, but not in anisotropic 2D materials yet. The quasi-particles in anisotropic 2D materials have fractional dimensionality which makes them perfect candidates to serve as a platform to study fundamental particle interactions in fractional dimensional space.In this Account, we present our recent progress related to 2D phosphorene, a 2D system with quasi-1D excitons and trions. Phosphorene, because of its unique anisotropic properties, provides a unique 2D platform for investigating the dynamics of excitons, trions, and biexcitons in reduced dimensions and fundamental many body interactions. We begin by explaining the fundamental reasons for the highly enhanced interactions in the 2D systems influenced by dielectric screening, resulting in high binding energies of excitons and trions, which are supported by theoretical calculations and experimental observations. Phosphorene has shown much higher binding energies of excitons and trions than TMD monolayers, which allows robust quasi-particles in anisotropic materials at room temperature. We also discuss the role of extrinsic defects induced in phosphorene, resulting in localized excitonic emissions in the near-infrared range, making it suitable for optical telecommunication applications. Finally, we present our vision of the exciting device applications based on the highly enhanced many body interactions in phosphorene, including exciton-polariton devices, polariton lasers, single-photon emitters, and tunable light emitting diodes (LEDs)." @default.
- W2800232755 created "2018-05-17" @default.
- W2800232755 creator A5006687770 @default.
- W2800232755 creator A5009872052 @default.
- W2800232755 creator A5012484573 @default.
- W2800232755 creator A5023229829 @default.
- W2800232755 creator A5025140198 @default.
- W2800232755 creator A5074568868 @default.
- W2800232755 date "2018-04-19" @default.
- W2800232755 modified "2023-09-27" @default.
- W2800232755 title "Highly Enhanced Many-Body Interactions in Anisotropic 2D Semiconductors" @default.
- W2800232755 cites W1561553867 @default.
- W2800232755 cites W1597159486 @default.
- W2800232755 cites W1721767752 @default.
- W2800232755 cites W1905461177 @default.
- W2800232755 cites W1964496760 @default.
- W2800232755 cites W1970831871 @default.
- W2800232755 cites W1983190782 @default.
- W2800232755 cites W2013144732 @default.
- W2800232755 cites W2016094469 @default.
- W2800232755 cites W2018958741 @default.
- W2800232755 cites W2029281675 @default.
- W2800232755 cites W2031316066 @default.
- W2800232755 cites W2035717284 @default.
- W2800232755 cites W2037969399 @default.
- W2800232755 cites W2040505145 @default.
- W2800232755 cites W2042468043 @default.
- W2800232755 cites W2044761402 @default.
- W2800232755 cites W2050303222 @default.
- W2800232755 cites W2051625133 @default.
- W2800232755 cites W2054773072 @default.
- W2800232755 cites W2061134880 @default.
- W2800232755 cites W2061488784 @default.
- W2800232755 cites W2064200581 @default.
- W2800232755 cites W2079689884 @default.
- W2800232755 cites W2080516950 @default.
- W2800232755 cites W2089470997 @default.
- W2800232755 cites W2111889102 @default.
- W2800232755 cites W2124156444 @default.
- W2800232755 cites W2125086348 @default.
- W2800232755 cites W2137794177 @default.
- W2800232755 cites W2151516307 @default.
- W2800232755 cites W2167267527 @default.
- W2800232755 cites W2179943485 @default.
- W2800232755 cites W2196734670 @default.
- W2800232755 cites W2230496879 @default.
- W2800232755 cites W2257210582 @default.
- W2800232755 cites W2259913129 @default.
- W2800232755 cites W2277058173 @default.
- W2800232755 cites W2295804934 @default.
- W2800232755 cites W2312306207 @default.
- W2800232755 cites W2316683731 @default.
- W2800232755 cites W2327439259 @default.
- W2800232755 cites W2331292532 @default.
- W2800232755 cites W2338620906 @default.
- W2800232755 cites W2338958535 @default.
- W2800232755 cites W2461281731 @default.
- W2800232755 cites W2494732795 @default.
- W2800232755 cites W2516109291 @default.
- W2800232755 cites W2523842685 @default.
- W2800232755 cites W2531806111 @default.
- W2800232755 cites W2554518942 @default.
- W2800232755 cites W2580378957 @default.
- W2800232755 cites W2606718115 @default.
- W2800232755 cites W2733445479 @default.
- W2800232755 cites W3101747384 @default.
- W2800232755 cites W3102280589 @default.
- W2800232755 cites W3103266534 @default.
- W2800232755 cites W3124612682 @default.
- W2800232755 cites W2055705378 @default.
- W2800232755 doi "https://doi.org/10.1021/acs.accounts.7b00504" @default.
- W2800232755 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29671579" @default.
- W2800232755 hasPublicationYear "2018" @default.
- W2800232755 type Work @default.
- W2800232755 sameAs 2800232755 @default.
- W2800232755 citedByCount "33" @default.
- W2800232755 countsByYear W28002327552018 @default.
- W2800232755 countsByYear W28002327552019 @default.
- W2800232755 countsByYear W28002327552020 @default.
- W2800232755 countsByYear W28002327552021 @default.
- W2800232755 countsByYear W28002327552022 @default.
- W2800232755 countsByYear W28002327552023 @default.
- W2800232755 crossrefType "journal-article" @default.
- W2800232755 hasAuthorship W2800232755A5006687770 @default.
- W2800232755 hasAuthorship W2800232755A5009872052 @default.
- W2800232755 hasAuthorship W2800232755A5012484573 @default.
- W2800232755 hasAuthorship W2800232755A5023229829 @default.
- W2800232755 hasAuthorship W2800232755A5025140198 @default.
- W2800232755 hasAuthorship W2800232755A5074568868 @default.
- W2800232755 hasConcept C108225325 @default.
- W2800232755 hasConcept C111030470 @default.
- W2800232755 hasConcept C119857082 @default.
- W2800232755 hasConcept C120665830 @default.
- W2800232755 hasConcept C121332964 @default.
- W2800232755 hasConcept C171250308 @default.
- W2800232755 hasConcept C17729963 @default.
- W2800232755 hasConcept C184050105 @default.
- W2800232755 hasConcept C192562407 @default.