Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800332243> ?p ?o ?g. }
- W2800332243 endingPage "8" @default.
- W2800332243 startingPage "1" @default.
- W2800332243 abstract "Pier scour is a major problem for the safe and economical design of bridges. Large number of field and laboratory studies have been conducted to investigative the effect of significant variables. Present study is an attempt to develop a generalized scour prediction equation to investigate temporal variation of scour around circular bridges utilizing the data generated from our experimental study as well as data collected by earlier researchers. Nearly 1100 laboratory experimental data-sets were compiled and utilized to develop the generalized scour equation using MLR and GA. The scour depth predicted using GA was found to be more accurate than MLR. Further, the equation developed in the present study was compared to the previously proposed equations. It was found that the present equation complies with observed data better than the previously proposed equations. About 20% and 35% data-sets are found to be within the ±25% error line using previously proposed equations, while GA-based relationship gave about 52% of the data points within ±25% error line." @default.
- W2800332243 created "2018-05-17" @default.
- W2800332243 creator A5008427326 @default.
- W2800332243 creator A5030806845 @default.
- W2800332243 creator A5067682036 @default.
- W2800332243 creator A5075746960 @default.
- W2800332243 date "2018-04-19" @default.
- W2800332243 modified "2023-10-03" @default.
- W2800332243 title "Multiple linear regression and genetic algorithm approaches to predict temporal scour depth near circular pier in non-cohesive sediment" @default.
- W2800332243 cites W1972137779 @default.
- W2800332243 cites W1976516600 @default.
- W2800332243 cites W1982515311 @default.
- W2800332243 cites W1994254420 @default.
- W2800332243 cites W1995828689 @default.
- W2800332243 cites W2003007507 @default.
- W2800332243 cites W2006075835 @default.
- W2800332243 cites W2006827355 @default.
- W2800332243 cites W2039115085 @default.
- W2800332243 cites W2045901117 @default.
- W2800332243 cites W2048740972 @default.
- W2800332243 cites W2065445636 @default.
- W2800332243 cites W2084491972 @default.
- W2800332243 cites W2092813076 @default.
- W2800332243 cites W2112883256 @default.
- W2800332243 cites W2122149880 @default.
- W2800332243 cites W2124979330 @default.
- W2800332243 cites W2133502011 @default.
- W2800332243 cites W2156383063 @default.
- W2800332243 cites W2204976185 @default.
- W2800332243 cites W2283125475 @default.
- W2800332243 cites W2473966794 @default.
- W2800332243 cites W2560160265 @default.
- W2800332243 cites W2607314946 @default.
- W2800332243 cites W2727112632 @default.
- W2800332243 cites W2744836910 @default.
- W2800332243 cites W2779511951 @default.
- W2800332243 cites W2780835753 @default.
- W2800332243 cites W4254330993 @default.
- W2800332243 cites W4254931348 @default.
- W2800332243 doi "https://doi.org/10.1080/09715010.2018.1457455" @default.
- W2800332243 hasPublicationYear "2018" @default.
- W2800332243 type Work @default.
- W2800332243 sameAs 2800332243 @default.
- W2800332243 citedByCount "23" @default.
- W2800332243 countsByYear W28003322432018 @default.
- W2800332243 countsByYear W28003322432019 @default.
- W2800332243 countsByYear W28003322432020 @default.
- W2800332243 countsByYear W28003322432021 @default.
- W2800332243 countsByYear W28003322432022 @default.
- W2800332243 countsByYear W28003322432023 @default.
- W2800332243 crossrefType "journal-article" @default.
- W2800332243 hasAuthorship W2800332243A5008427326 @default.
- W2800332243 hasAuthorship W2800332243A5030806845 @default.
- W2800332243 hasAuthorship W2800332243A5067682036 @default.
- W2800332243 hasAuthorship W2800332243A5075746960 @default.
- W2800332243 hasConcept C105795698 @default.
- W2800332243 hasConcept C11413529 @default.
- W2800332243 hasConcept C114793014 @default.
- W2800332243 hasConcept C127313418 @default.
- W2800332243 hasConcept C127413603 @default.
- W2800332243 hasConcept C152877465 @default.
- W2800332243 hasConcept C157892014 @default.
- W2800332243 hasConcept C187320778 @default.
- W2800332243 hasConcept C202444582 @default.
- W2800332243 hasConcept C2816523 @default.
- W2800332243 hasConcept C33923547 @default.
- W2800332243 hasConcept C48921125 @default.
- W2800332243 hasConcept C66938386 @default.
- W2800332243 hasConcept C83546350 @default.
- W2800332243 hasConcept C9652623 @default.
- W2800332243 hasConceptScore W2800332243C105795698 @default.
- W2800332243 hasConceptScore W2800332243C11413529 @default.
- W2800332243 hasConceptScore W2800332243C114793014 @default.
- W2800332243 hasConceptScore W2800332243C127313418 @default.
- W2800332243 hasConceptScore W2800332243C127413603 @default.
- W2800332243 hasConceptScore W2800332243C152877465 @default.
- W2800332243 hasConceptScore W2800332243C157892014 @default.
- W2800332243 hasConceptScore W2800332243C187320778 @default.
- W2800332243 hasConceptScore W2800332243C202444582 @default.
- W2800332243 hasConceptScore W2800332243C2816523 @default.
- W2800332243 hasConceptScore W2800332243C33923547 @default.
- W2800332243 hasConceptScore W2800332243C48921125 @default.
- W2800332243 hasConceptScore W2800332243C66938386 @default.
- W2800332243 hasConceptScore W2800332243C83546350 @default.
- W2800332243 hasConceptScore W2800332243C9652623 @default.
- W2800332243 hasLocation W28003322431 @default.
- W2800332243 hasOpenAccess W2800332243 @default.
- W2800332243 hasPrimaryLocation W28003322431 @default.
- W2800332243 hasRelatedWork W1555242842 @default.
- W2800332243 hasRelatedWork W2018697919 @default.
- W2800332243 hasRelatedWork W2062105804 @default.
- W2800332243 hasRelatedWork W2375721435 @default.
- W2800332243 hasRelatedWork W247449116 @default.
- W2800332243 hasRelatedWork W2966251753 @default.
- W2800332243 hasRelatedWork W3122861356 @default.
- W2800332243 hasRelatedWork W4249094282 @default.
- W2800332243 hasRelatedWork W4290879003 @default.
- W2800332243 hasRelatedWork W2738033194 @default.