Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800361010> ?p ?o ?g. }
- W2800361010 endingPage "581" @default.
- W2800361010 startingPage "565" @default.
- W2800361010 abstract "Time–composition relationships in eruptive sequences at composite volcanoes can show how the ongoing intrusion of magmas progressively affects the lithosphere at continental convergent margins. Here, new whole-rock and microanalytical major and trace element data from andesite-dacite lava flows are integrated with previous studies and existing isotopic data, and placed within the framework of a high-resolution chronostratigraphy for Ruapehu volcano (southern Taupo Volcanic Zone, New Zealand). The geochemical evolution of lavas erupted over the ~200 kyr lifetime of the exposed edifice reflects variable degrees of fractionation and systematic changes in the type of crustal assimilation in the Ruapehu magma system. Lavas erupted from ~200–150 ka have previously been distinguished from those erupted <150 ka based on Sr-Nd isotopic characteristics, which indicate that the oldest lavas were sourced from magmas that assimilated oceanic crust. Such source rocks underlie the regionally widespread Mesozoic meta-sedimentary greywacke-argillite basement, which was conversely assimilated by <150 ka magmas. New results from this work reveal that since 150 ka, an upper limit of magma differentiation occurred from ~50–35 ka. High K2O (~6 wt%) and Rb contents (~270 ppm) in melt inclusions, interstitial glass, and glass from in situ quenched melts of partially fused crustal xenoliths are reported for andesite-dacite lavas erupted during this period. In addition to crystal fractionation, selective partial melting and assimilation of K- and Rb-rich mineral phases (e.g., biotite, K-feldspar) that are significant components of the meta-sedimentary basement rocks is inferred to explain these geochemical characteristics. These processes coincided also with the effusion of high-MgO andesite-dacite lavas that display petrological evidence for mixing between andesite-dacite and more mafic magmas. An influx of hotter mafic magma into the system explains why the extent of crustal assimilation recorded by Ruapehu lavas peaked during the ~50–35 ka eruptive period. From 26 ka to the present, andesite lavas have reverted to more mafic compositions with less potassic melt inclusion and whole-rock compositions when compared to the ~50–35 ka lavas. We suggest that the younger lavas assimilated less-enriched melts because fertile phases had been preferentially extracted from the crustal column during earlier magmatism. This scenario of bottom-up heating of the lithosphere and exhaustion of fertile phases due to the progressive intrusion of magma explains the geochemical evolution of Ruapehu lavas. This model may be applicable to other long-lived composite volcanoes of the circum-Pacific continental arcs." @default.
- W2800361010 created "2018-05-17" @default.
- W2800361010 creator A5001131895 @default.
- W2800361010 creator A5021836423 @default.
- W2800361010 creator A5043799338 @default.
- W2800361010 creator A5050323912 @default.
- W2800361010 creator A5069839970 @default.
- W2800361010 creator A5090222248 @default.
- W2800361010 date "2018-04-01" @default.
- W2800361010 modified "2023-09-26" @default.
- W2800361010 title "New petrological, geochemical, and geochronological perspectives on andesite-dacite magma genesis at Ruapehu volcano, New Zealand" @default.
- W2800361010 cites W1559691030 @default.
- W2800361010 cites W1596478593 @default.
- W2800361010 cites W1896687249 @default.
- W2800361010 cites W1968178183 @default.
- W2800361010 cites W1969411527 @default.
- W2800361010 cites W1974399179 @default.
- W2800361010 cites W1976483605 @default.
- W2800361010 cites W1976879065 @default.
- W2800361010 cites W1980232060 @default.
- W2800361010 cites W1980908182 @default.
- W2800361010 cites W1983445840 @default.
- W2800361010 cites W1986630644 @default.
- W2800361010 cites W1990853891 @default.
- W2800361010 cites W1991456370 @default.
- W2800361010 cites W1991712311 @default.
- W2800361010 cites W1995100799 @default.
- W2800361010 cites W1995272855 @default.
- W2800361010 cites W1995809323 @default.
- W2800361010 cites W1997922501 @default.
- W2800361010 cites W2002194491 @default.
- W2800361010 cites W2004973269 @default.
- W2800361010 cites W2007539566 @default.
- W2800361010 cites W2008602349 @default.
- W2800361010 cites W2009935077 @default.
- W2800361010 cites W2009958419 @default.
- W2800361010 cites W2010943359 @default.
- W2800361010 cites W2013639409 @default.
- W2800361010 cites W2015173307 @default.
- W2800361010 cites W2017184403 @default.
- W2800361010 cites W2021014922 @default.
- W2800361010 cites W2021678594 @default.
- W2800361010 cites W2023741741 @default.
- W2800361010 cites W2024575502 @default.
- W2800361010 cites W2025571169 @default.
- W2800361010 cites W2027868803 @default.
- W2800361010 cites W2028126209 @default.
- W2800361010 cites W2038072959 @default.
- W2800361010 cites W2038641152 @default.
- W2800361010 cites W2039291242 @default.
- W2800361010 cites W2043399517 @default.
- W2800361010 cites W2044596835 @default.
- W2800361010 cites W2044609027 @default.
- W2800361010 cites W2044812716 @default.
- W2800361010 cites W2053396208 @default.
- W2800361010 cites W2057550910 @default.
- W2800361010 cites W2060010945 @default.
- W2800361010 cites W2061076479 @default.
- W2800361010 cites W2065830271 @default.
- W2800361010 cites W2068015389 @default.
- W2800361010 cites W2068873158 @default.
- W2800361010 cites W2072263009 @default.
- W2800361010 cites W2074579635 @default.
- W2800361010 cites W2078838424 @default.
- W2800361010 cites W2081907990 @default.
- W2800361010 cites W2086425155 @default.
- W2800361010 cites W2088611727 @default.
- W2800361010 cites W2090400938 @default.
- W2800361010 cites W2098262145 @default.
- W2800361010 cites W2104736554 @default.
- W2800361010 cites W2105068734 @default.
- W2800361010 cites W2106079840 @default.
- W2800361010 cites W2106563361 @default.
- W2800361010 cites W2109325675 @default.
- W2800361010 cites W2118153886 @default.
- W2800361010 cites W2120658260 @default.
- W2800361010 cites W2131114970 @default.
- W2800361010 cites W2132531596 @default.
- W2800361010 cites W2133864009 @default.
- W2800361010 cites W2136934948 @default.
- W2800361010 cites W2141929969 @default.
- W2800361010 cites W2151365505 @default.
- W2800361010 cites W2159710399 @default.
- W2800361010 cites W2166515343 @default.
- W2800361010 cites W2287139546 @default.
- W2800361010 cites W2340197136 @default.
- W2800361010 cites W2581834115 @default.
- W2800361010 cites W2606821369 @default.
- W2800361010 cites W2607173620 @default.
- W2800361010 cites W2752500783 @default.
- W2800361010 cites W4211131589 @default.
- W2800361010 cites W779523286 @default.
- W2800361010 doi "https://doi.org/10.2138/am-2018-6199" @default.
- W2800361010 hasPublicationYear "2018" @default.
- W2800361010 type Work @default.
- W2800361010 sameAs 2800361010 @default.
- W2800361010 citedByCount "14" @default.
- W2800361010 countsByYear W28003610102018 @default.