Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800371750> ?p ?o ?g. }
- W2800371750 endingPage "17" @default.
- W2800371750 startingPage "1" @default.
- W2800371750 abstract "In this paper, we propose a spectral–spatial unified network (SSUN) with an end-to-end architecture for the hyperspectral image (HSI) classification. Different from traditional spectral–spatial classification frameworks where the spectral feature extraction (FE), spatial FE, and classifier training are separated, these processes are integrated into a unified network in our model. In this way, both FE and classifier training will share a uniform objective function and all the parameters in the network can be optimized at the same time. In the implementation of the SSUN, we propose a band grouping-based long short-term memory model and a multiscale convolutional neural network as the spectral and spatial feature extractors, respectively. In the experiments, three benchmark HSIs are utilized to evaluate the performance of the proposed method. The experimental results demonstrate that the SSUN can yield a competitive performance compared with existing methods." @default.
- W2800371750 created "2018-05-17" @default.
- W2800371750 creator A5053447705 @default.
- W2800371750 creator A5060042752 @default.
- W2800371750 creator A5066135984 @default.
- W2800371750 creator A5068885379 @default.
- W2800371750 date "2018-01-01" @default.
- W2800371750 modified "2023-10-15" @default.
- W2800371750 title "Spectral-Spatial Unified Networks for Hyperspectral Image Classification" @default.
- W2800371750 cites W1498436455 @default.
- W2800371750 cites W1521436688 @default.
- W2800371750 cites W1902936532 @default.
- W2800371750 cites W2016860790 @default.
- W2800371750 cites W2029316659 @default.
- W2800371750 cites W2038137144 @default.
- W2800371750 cites W2043665634 @default.
- W2800371750 cites W2053186076 @default.
- W2800371750 cites W2064675550 @default.
- W2800371750 cites W2086866337 @default.
- W2800371750 cites W2087263574 @default.
- W2800371750 cites W2090424610 @default.
- W2800371750 cites W2097900616 @default.
- W2800371750 cites W2098057602 @default.
- W2800371750 cites W2100495367 @default.
- W2800371750 cites W2101926813 @default.
- W2800371750 cites W2106777458 @default.
- W2800371750 cites W2107799335 @default.
- W2800371750 cites W2112796928 @default.
- W2800371750 cites W2114819256 @default.
- W2800371750 cites W2115451191 @default.
- W2800371750 cites W2117741752 @default.
- W2800371750 cites W2121029939 @default.
- W2800371750 cites W2122585011 @default.
- W2800371750 cites W2127070009 @default.
- W2800371750 cites W2127199143 @default.
- W2800371750 cites W2131438174 @default.
- W2800371750 cites W2134663338 @default.
- W2800371750 cites W2136922672 @default.
- W2800371750 cites W2138038253 @default.
- W2800371750 cites W2140991832 @default.
- W2800371750 cites W2150355110 @default.
- W2800371750 cites W2150990614 @default.
- W2800371750 cites W2151599207 @default.
- W2800371750 cites W2151665594 @default.
- W2800371750 cites W2152477088 @default.
- W2800371750 cites W2153635508 @default.
- W2800371750 cites W2161943337 @default.
- W2800371750 cites W2164437025 @default.
- W2800371750 cites W2179290474 @default.
- W2800371750 cites W2257307118 @default.
- W2800371750 cites W2277132981 @default.
- W2800371750 cites W2291068538 @default.
- W2800371750 cites W2314785379 @default.
- W2800371750 cites W2344884875 @default.
- W2800371750 cites W2358876993 @default.
- W2800371750 cites W2412558220 @default.
- W2800371750 cites W2412588858 @default.
- W2800371750 cites W2431738724 @default.
- W2800371750 cites W2500751094 @default.
- W2800371750 cites W2548791488 @default.
- W2800371750 cites W2603422184 @default.
- W2800371750 cites W2605793178 @default.
- W2800371750 cites W2611655888 @default.
- W2800371750 cites W2614326984 @default.
- W2800371750 cites W2732412926 @default.
- W2800371750 cites W2759518055 @default.
- W2800371750 cites W2772147448 @default.
- W2800371750 cites W2783231089 @default.
- W2800371750 cites W3100245404 @default.
- W2800371750 cites W3103856189 @default.
- W2800371750 doi "https://doi.org/10.1109/tgrs.2018.2827407" @default.
- W2800371750 hasPublicationYear "2018" @default.
- W2800371750 type Work @default.
- W2800371750 sameAs 2800371750 @default.
- W2800371750 citedByCount "177" @default.
- W2800371750 countsByYear W28003717502018 @default.
- W2800371750 countsByYear W28003717502019 @default.
- W2800371750 countsByYear W28003717502020 @default.
- W2800371750 countsByYear W28003717502021 @default.
- W2800371750 countsByYear W28003717502022 @default.
- W2800371750 countsByYear W28003717502023 @default.
- W2800371750 crossrefType "journal-article" @default.
- W2800371750 hasAuthorship W2800371750A5053447705 @default.
- W2800371750 hasAuthorship W2800371750A5060042752 @default.
- W2800371750 hasAuthorship W2800371750A5066135984 @default.
- W2800371750 hasAuthorship W2800371750A5068885379 @default.
- W2800371750 hasConcept C115961682 @default.
- W2800371750 hasConcept C127313418 @default.
- W2800371750 hasConcept C153180895 @default.
- W2800371750 hasConcept C154945302 @default.
- W2800371750 hasConcept C159078339 @default.
- W2800371750 hasConcept C205372480 @default.
- W2800371750 hasConcept C41008148 @default.
- W2800371750 hasConcept C62649853 @default.
- W2800371750 hasConcept C75294576 @default.
- W2800371750 hasConcept C78660771 @default.
- W2800371750 hasConceptScore W2800371750C115961682 @default.
- W2800371750 hasConceptScore W2800371750C127313418 @default.