Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800380319> ?p ?o ?g. }
- W2800380319 endingPage "2214" @default.
- W2800380319 startingPage "2200" @default.
- W2800380319 abstract "Electroencephalogram (EEG) signal identification based on intelligent models is an important means in epilepsy detection. In the recognition of epileptic EEG signals, traditional intelligent methods usually assume that the training dataset and testing dataset have the same distribution, and the data available for training are adequate. However, these two conditions cannot always be met in practice, which reduces the ability of the intelligent recognition model obtained in detecting epileptic EEG signals. To overcome this issue, an effective strategy is to introduce transfer learning in the construction of the intelligent models, where knowledge is learned from the related scenes (source domains) to enhance the performance of model trained in the current scene (target domain). Although transfer learning has been used in EEG signal identification, many existing transfer learning techniques are designed only for a specific intelligent model, which limit their applicability to other classical intelligent models. To extend the scope of application, the generalized hidden-mapping transductive learning method is proposed to realize transfer learning for several classical intelligent models, including feedforward neural networks, fuzzy systems, and kernelized linear models. These intelligent models can be trained effectively by the proposed method even though the data available are insufficient for model training, and the generalization abilities of the trained model is also enhanced by transductive learning. A number of experiments are carried out to demonstrate the effectiveness of the proposed method in epileptic EEG recognition. The results show that the method is highly competitive or superior to some existing state-of-the-art methods." @default.
- W2800380319 created "2018-05-17" @default.
- W2800380319 creator A5003183751 @default.
- W2800380319 creator A5042607110 @default.
- W2800380319 creator A5048680068 @default.
- W2800380319 creator A5074575345 @default.
- W2800380319 creator A5077532535 @default.
- W2800380319 date "2019-06-01" @default.
- W2800380319 modified "2023-10-09" @default.
- W2800380319 title "Generalized Hidden-Mapping Transductive Transfer Learning for Recognition of Epileptic Electroencephalogram Signals" @default.
- W2800380319 cites W1514801518 @default.
- W2800380319 cites W1566689562 @default.
- W2800380319 cites W1575429381 @default.
- W2800380319 cites W1797293159 @default.
- W2800380319 cites W1964494592 @default.
- W2800380319 cites W1977664130 @default.
- W2800380319 cites W1979148805 @default.
- W2800380319 cites W1985930470 @default.
- W2800380319 cites W1986933555 @default.
- W2800380319 cites W1992852845 @default.
- W2800380319 cites W1998326571 @default.
- W2800380319 cites W2004718447 @default.
- W2800380319 cites W2013988526 @default.
- W2800380319 cites W2016589492 @default.
- W2800380319 cites W2021326137 @default.
- W2800380319 cites W2021514226 @default.
- W2800380319 cites W2021970732 @default.
- W2800380319 cites W2051787883 @default.
- W2800380319 cites W2053744708 @default.
- W2800380319 cites W2054573701 @default.
- W2800380319 cites W2058722442 @default.
- W2800380319 cites W2062152791 @default.
- W2800380319 cites W2073788174 @default.
- W2800380319 cites W2080404350 @default.
- W2800380319 cites W2081895431 @default.
- W2800380319 cites W2089951337 @default.
- W2800380319 cites W2101383962 @default.
- W2800380319 cites W2101827712 @default.
- W2800380319 cites W2103266366 @default.
- W2800380319 cites W2107941496 @default.
- W2800380319 cites W2116119284 @default.
- W2800380319 cites W2132240828 @default.
- W2800380319 cites W2134050473 @default.
- W2800380319 cites W2137983211 @default.
- W2800380319 cites W2142904341 @default.
- W2800380319 cites W2154284321 @default.
- W2800380319 cites W2155129393 @default.
- W2800380319 cites W2156383341 @default.
- W2800380319 cites W2157762168 @default.
- W2800380319 cites W2158585918 @default.
- W2800380319 cites W2158976038 @default.
- W2800380319 cites W2160867523 @default.
- W2800380319 cites W2165698076 @default.
- W2800380319 cites W2169976759 @default.
- W2800380319 cites W2244087156 @default.
- W2800380319 cites W2343174050 @default.
- W2800380319 cites W2344271072 @default.
- W2800380319 cites W2423195739 @default.
- W2800380319 cites W2488269320 @default.
- W2800380319 cites W2493031908 @default.
- W2800380319 cites W2512389528 @default.
- W2800380319 cites W2519140045 @default.
- W2800380319 cites W2584922303 @default.
- W2800380319 cites W2608948620 @default.
- W2800380319 cites W4255455317 @default.
- W2800380319 cites W4256490426 @default.
- W2800380319 doi "https://doi.org/10.1109/tcyb.2018.2821764" @default.
- W2800380319 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29993945" @default.
- W2800380319 hasPublicationYear "2019" @default.
- W2800380319 type Work @default.
- W2800380319 sameAs 2800380319 @default.
- W2800380319 citedByCount "42" @default.
- W2800380319 countsByYear W28003803192019 @default.
- W2800380319 countsByYear W28003803192020 @default.
- W2800380319 countsByYear W28003803192021 @default.
- W2800380319 countsByYear W28003803192022 @default.
- W2800380319 countsByYear W28003803192023 @default.
- W2800380319 crossrefType "journal-article" @default.
- W2800380319 hasAuthorship W2800380319A5003183751 @default.
- W2800380319 hasAuthorship W2800380319A5042607110 @default.
- W2800380319 hasAuthorship W2800380319A5048680068 @default.
- W2800380319 hasAuthorship W2800380319A5074575345 @default.
- W2800380319 hasAuthorship W2800380319A5077532535 @default.
- W2800380319 hasConcept C116834253 @default.
- W2800380319 hasConcept C118552586 @default.
- W2800380319 hasConcept C119857082 @default.
- W2800380319 hasConcept C134306372 @default.
- W2800380319 hasConcept C150899416 @default.
- W2800380319 hasConcept C153180895 @default.
- W2800380319 hasConcept C154945302 @default.
- W2800380319 hasConcept C15744967 @default.
- W2800380319 hasConcept C177148314 @default.
- W2800380319 hasConcept C199360897 @default.
- W2800380319 hasConcept C2779843651 @default.
- W2800380319 hasConcept C33923547 @default.
- W2800380319 hasConcept C41008148 @default.
- W2800380319 hasConcept C50644808 @default.
- W2800380319 hasConcept C522805319 @default.