Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800388620> ?p ?o ?g. }
- W2800388620 abstract "Embedding techniques for converting high-dimensional sparse data into low-dimensional distributed representations have been gaining popularity in various fields of research. In deep learning models, embedding is commonly used and proven to be more effective than naive binary representation. However, yet no attempt has been made to embed highly sparse mutation profiles into densely distributed representations. Since binary representation does not capture biological context, its use is limited in many applications such as discovering novel driver mutations. Additionally, training distributed representations of mutations is challenging due to a relatively small amount of available biological data compared with the large amount of text corpus data in text mining fields.We introduce Mut2Vec, a novel computational pipeline that can be used to create a distributed representation of cancerous mutations. Mut2Vec is trained on cancer profiles using Skip-Gram since cancer can be characterized by a series of co-occurring mutations. We also augmented our pipeline with existing information in the biomedical literature and protein-protein interaction networks to compensate for the data insufficiency.To evaluate our models, we conducted two experiments that involved the following tasks: a) visualizing driver and passenger mutations, b) identifying novel driver mutations using a clustering method. Our visualization showed a clear distinction between passenger mutations and driver mutations. We also found driver mutation candidates and proved that these were true driver mutations based on our literature survey. The pre-trained mutation vectors and the candidate driver mutations are publicly available at http://infos.korea.ac.kr/mut2vec .We introduce Mut2Vec that can be utilized to generate distributed representations of mutations and experimentally validate the efficacy of the generated mutation representations. Mut2Vec can be used in various deep learning applications such as cancer classification and drug sensitivity prediction." @default.
- W2800388620 created "2018-05-17" @default.
- W2800388620 creator A5000850685 @default.
- W2800388620 creator A5041225034 @default.
- W2800388620 creator A5057948869 @default.
- W2800388620 creator A5076917278 @default.
- W2800388620 date "2018-04-01" @default.
- W2800388620 modified "2023-10-10" @default.
- W2800388620 title "Mut2Vec: distributed representation of cancerous mutations" @default.
- W2800388620 cites W1120514394 @default.
- W2800388620 cites W1501531009 @default.
- W2800388620 cites W1503259811 @default.
- W2800388620 cites W1821381892 @default.
- W2800388620 cites W1882772761 @default.
- W2800388620 cites W1974515789 @default.
- W2800388620 cites W1975002856 @default.
- W2800388620 cites W1981896461 @default.
- W2800388620 cites W1988546996 @default.
- W2800388620 cites W1991951536 @default.
- W2800388620 cites W2017712465 @default.
- W2800388620 cites W2023568503 @default.
- W2800388620 cites W2038208403 @default.
- W2800388620 cites W2059300459 @default.
- W2800388620 cites W2071700698 @default.
- W2800388620 cites W2081580037 @default.
- W2800388620 cites W2082756899 @default.
- W2800388620 cites W2087612189 @default.
- W2800388620 cites W2094122486 @default.
- W2800388620 cites W2112796928 @default.
- W2800388620 cites W2121906867 @default.
- W2800388620 cites W2122566852 @default.
- W2800388620 cites W2131050852 @default.
- W2800388620 cites W2135261790 @default.
- W2800388620 cites W2143612262 @default.
- W2800388620 cites W2152274187 @default.
- W2800388620 cites W2159482845 @default.
- W2800388620 cites W2195049161 @default.
- W2800388620 cites W2224048827 @default.
- W2800388620 cites W2259741002 @default.
- W2800388620 cites W2283434330 @default.
- W2800388620 cites W2290786109 @default.
- W2800388620 cites W2296252208 @default.
- W2800388620 cites W2297147175 @default.
- W2800388620 cites W2327666848 @default.
- W2800388620 cites W2341085106 @default.
- W2800388620 cites W2343448628 @default.
- W2800388620 cites W2345356016 @default.
- W2800388620 cites W2433743436 @default.
- W2800388620 cites W2436561939 @default.
- W2800388620 cites W2464533313 @default.
- W2800388620 cites W2464731156 @default.
- W2800388620 cites W2511677340 @default.
- W2800388620 cites W2515504521 @default.
- W2800388620 cites W2530380647 @default.
- W2800388620 cites W2532340137 @default.
- W2800388620 cites W2569793617 @default.
- W2800388620 cites W2580923676 @default.
- W2800388620 cites W2582438239 @default.
- W2800388620 cites W2594241068 @default.
- W2800388620 cites W2595038369 @default.
- W2800388620 cites W2603278873 @default.
- W2800388620 cites W2604648767 @default.
- W2800388620 cites W2616561588 @default.
- W2800388620 cites W2733282759 @default.
- W2800388620 cites W2915536738 @default.
- W2800388620 cites W4294216483 @default.
- W2800388620 doi "https://doi.org/10.1186/s12920-018-0349-7" @default.
- W2800388620 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5918431" @default.
- W2800388620 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29697361" @default.
- W2800388620 hasPublicationYear "2018" @default.
- W2800388620 type Work @default.
- W2800388620 sameAs 2800388620 @default.
- W2800388620 citedByCount "28" @default.
- W2800388620 countsByYear W28003886202018 @default.
- W2800388620 countsByYear W28003886202019 @default.
- W2800388620 countsByYear W28003886202020 @default.
- W2800388620 countsByYear W28003886202021 @default.
- W2800388620 countsByYear W28003886202022 @default.
- W2800388620 countsByYear W28003886202023 @default.
- W2800388620 crossrefType "journal-article" @default.
- W2800388620 hasAuthorship W2800388620A5000850685 @default.
- W2800388620 hasAuthorship W2800388620A5041225034 @default.
- W2800388620 hasAuthorship W2800388620A5057948869 @default.
- W2800388620 hasAuthorship W2800388620A5076917278 @default.
- W2800388620 hasBestOaLocation W28003886201 @default.
- W2800388620 hasConcept C104317684 @default.
- W2800388620 hasConcept C124101348 @default.
- W2800388620 hasConcept C151730666 @default.
- W2800388620 hasConcept C154945302 @default.
- W2800388620 hasConcept C17744445 @default.
- W2800388620 hasConcept C199360897 @default.
- W2800388620 hasConcept C199539241 @default.
- W2800388620 hasConcept C2776359362 @default.
- W2800388620 hasConcept C2779343474 @default.
- W2800388620 hasConcept C36464697 @default.
- W2800388620 hasConcept C41008148 @default.
- W2800388620 hasConcept C41608201 @default.
- W2800388620 hasConcept C43521106 @default.
- W2800388620 hasConcept C501734568 @default.
- W2800388620 hasConcept C54355233 @default.