Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800395832> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W2800395832 endingPage "34" @default.
- W2800395832 startingPage "22" @default.
- W2800395832 abstract "Abstract In many radar or sonar tracking applications, the amplitude information (AI) is known to improve data association and target state estimation in most of multi-object filters. However, when considering targets in noisy backgrounds, existing multi-object filters rely on a number of assumptions, relating to the uniformity of the spatial distribution of the clutter and amplitude distribution of the clutter being Rayleigh. These assumptions are seldom held under realistic conditions, and as such, the underlying multi-object filters deliver a sub-optimal tracking performance. In this paper, we incorporate the AI as part of the multi-object filtering process to render very novel filters that can handle multi-object tracking in much more difficult and realistic conditions. In particular, we propose an inverse Gamma Gaussian Model for the target and clutter state, consisting of kinematic state and return power. We then develop the inverse Gamma Gaussian Mixture (IGGM) implementation of the RFS filters with AI. Simulations show that proposed filters, in particular when combined with clutter estimation and its RFS approximation, are more robust in handling a number of realistic cases when compared against existing filters." @default.
- W2800395832 created "2018-05-17" @default.
- W2800395832 creator A5008605990 @default.
- W2800395832 creator A5013293619 @default.
- W2800395832 creator A5028440212 @default.
- W2800395832 creator A5042241049 @default.
- W2800395832 creator A5052134746 @default.
- W2800395832 date "2018-11-01" @default.
- W2800395832 modified "2023-10-17" @default.
- W2800395832 title "Multi-object Bayesian filters with amplitude information in clutter background" @default.
- W2800395832 cites W1424291775 @default.
- W2800395832 cites W1604481327 @default.
- W2800395832 cites W1909771825 @default.
- W2800395832 cites W1974748621 @default.
- W2800395832 cites W2014787937 @default.
- W2800395832 cites W2019946978 @default.
- W2800395832 cites W2029870171 @default.
- W2800395832 cites W2033804800 @default.
- W2800395832 cites W2043240002 @default.
- W2800395832 cites W2044994367 @default.
- W2800395832 cites W2049244691 @default.
- W2800395832 cites W2084551895 @default.
- W2800395832 cites W2100548006 @default.
- W2800395832 cites W2101295974 @default.
- W2800395832 cites W2105905583 @default.
- W2800395832 cites W2106873007 @default.
- W2800395832 cites W2108474513 @default.
- W2800395832 cites W2110354007 @default.
- W2800395832 cites W2117454350 @default.
- W2800395832 cites W2120378065 @default.
- W2800395832 cites W2126885789 @default.
- W2800395832 cites W2137585588 @default.
- W2800395832 cites W2144617132 @default.
- W2800395832 cites W2154353836 @default.
- W2800395832 cites W2157599066 @default.
- W2800395832 cites W2183036041 @default.
- W2800395832 cites W2337876856 @default.
- W2800395832 doi "https://doi.org/10.1016/j.sigpro.2018.05.004" @default.
- W2800395832 hasPublicationYear "2018" @default.
- W2800395832 type Work @default.
- W2800395832 sameAs 2800395832 @default.
- W2800395832 citedByCount "3" @default.
- W2800395832 countsByYear W28003958322019 @default.
- W2800395832 countsByYear W28003958322022 @default.
- W2800395832 crossrefType "journal-article" @default.
- W2800395832 hasAuthorship W2800395832A5008605990 @default.
- W2800395832 hasAuthorship W2800395832A5013293619 @default.
- W2800395832 hasAuthorship W2800395832A5028440212 @default.
- W2800395832 hasAuthorship W2800395832A5042241049 @default.
- W2800395832 hasAuthorship W2800395832A5052134746 @default.
- W2800395832 hasConcept C107673813 @default.
- W2800395832 hasConcept C120665830 @default.
- W2800395832 hasConcept C121332964 @default.
- W2800395832 hasConcept C132094186 @default.
- W2800395832 hasConcept C154945302 @default.
- W2800395832 hasConcept C180205008 @default.
- W2800395832 hasConcept C24890656 @default.
- W2800395832 hasConcept C2781238097 @default.
- W2800395832 hasConcept C31972630 @default.
- W2800395832 hasConcept C41008148 @default.
- W2800395832 hasConcept C554190296 @default.
- W2800395832 hasConcept C76155785 @default.
- W2800395832 hasConceptScore W2800395832C107673813 @default.
- W2800395832 hasConceptScore W2800395832C120665830 @default.
- W2800395832 hasConceptScore W2800395832C121332964 @default.
- W2800395832 hasConceptScore W2800395832C132094186 @default.
- W2800395832 hasConceptScore W2800395832C154945302 @default.
- W2800395832 hasConceptScore W2800395832C180205008 @default.
- W2800395832 hasConceptScore W2800395832C24890656 @default.
- W2800395832 hasConceptScore W2800395832C2781238097 @default.
- W2800395832 hasConceptScore W2800395832C31972630 @default.
- W2800395832 hasConceptScore W2800395832C41008148 @default.
- W2800395832 hasConceptScore W2800395832C554190296 @default.
- W2800395832 hasConceptScore W2800395832C76155785 @default.
- W2800395832 hasFunder F4320321001 @default.
- W2800395832 hasLocation W28003958321 @default.
- W2800395832 hasOpenAccess W2800395832 @default.
- W2800395832 hasPrimaryLocation W28003958321 @default.
- W2800395832 hasRelatedWork W1531683208 @default.
- W2800395832 hasRelatedWork W1550912305 @default.
- W2800395832 hasRelatedWork W2032041146 @default.
- W2800395832 hasRelatedWork W2141294180 @default.
- W2800395832 hasRelatedWork W2169723010 @default.
- W2800395832 hasRelatedWork W2357365693 @default.
- W2800395832 hasRelatedWork W2608783556 @default.
- W2800395832 hasRelatedWork W2729848167 @default.
- W2800395832 hasRelatedWork W2975200075 @default.
- W2800395832 hasRelatedWork W4297409039 @default.
- W2800395832 hasVolume "152" @default.
- W2800395832 isParatext "false" @default.
- W2800395832 isRetracted "false" @default.
- W2800395832 magId "2800395832" @default.
- W2800395832 workType "article" @default.