Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800443451> ?p ?o ?g. }
- W2800443451 abstract "In many medical, financial, industrial, e.t.c. applications of statistics, the model parameters may undergo changes at unknown moment of time. In this thesis, we consider change point analysis in a regression setting for dichotomous responses, i.e. they can be modeled as Bernoulli or 0-1 variables. Applications are widespread including credit scoring in financial statistics and dose-response relations in biometry. The model parameters are estimated using neural network method. We show that the parameter estimates are identifiable up to a given family of transformations and derive the consistency and asymptotic normality of the network parameter estimates using the results in Franke and Neumann Franke Neumann (2000). We use a neural network based likelihood ratio test statistic to detect a change point in a given set of data and derive the limit distribution of the estimator using the results in Gombay and Horvath (1994,1996) under the assumption that the model is properly specified. For the misspecified case, we develop a scaled test statistic for the case of one-dimensional parameter. Through simulation, we show that the sample size, change point location and the size of change influence change point detection. In this work, the maximum likelihood estimation method is used to estimate a change point when it has been detected. Through simulation, we show that change point estimation is influenced by the sample size, change point location and the size of change. We present two methods for determining the change point confidence intervals: Profile log-likelihood ratio and Percentile bootstrap methods. Through simulation, the Percentile bootstrap method is shown to be superior to profile log-likelihood ratio method." @default.
- W2800443451 created "2018-05-17" @default.
- W2800443451 creator A5026303943 @default.
- W2800443451 date "2008-01-01" @default.
- W2800443451 modified "2023-10-17" @default.
- W2800443451 title "Nonparametric changepoint analysis for bernoulli random variables based on neural networks" @default.
- W2800443451 cites W103818757 @default.
- W2800443451 cites W1483284482 @default.
- W2800443451 cites W1577286032 @default.
- W2800443451 cites W1970516179 @default.
- W2800443451 cites W1971423075 @default.
- W2800443451 cites W1974080586 @default.
- W2800443451 cites W1981184437 @default.
- W2800443451 cites W1984140225 @default.
- W2800443451 cites W1987269573 @default.
- W2800443451 cites W1988330066 @default.
- W2800443451 cites W1989914875 @default.
- W2800443451 cites W1991485860 @default.
- W2800443451 cites W1991576173 @default.
- W2800443451 cites W1995609782 @default.
- W2800443451 cites W1995945562 @default.
- W2800443451 cites W1998522803 @default.
- W2800443451 cites W2000586291 @default.
- W2800443451 cites W2002363224 @default.
- W2800443451 cites W2003002169 @default.
- W2800443451 cites W2011865072 @default.
- W2800443451 cites W2011896174 @default.
- W2800443451 cites W2013866619 @default.
- W2800443451 cites W2017137572 @default.
- W2800443451 cites W2020623760 @default.
- W2800443451 cites W2027251375 @default.
- W2800443451 cites W2032452969 @default.
- W2800443451 cites W2033487414 @default.
- W2800443451 cites W2034544282 @default.
- W2800443451 cites W2035511430 @default.
- W2800443451 cites W2038210983 @default.
- W2800443451 cites W2038773109 @default.
- W2800443451 cites W2039860729 @default.
- W2800443451 cites W2040962083 @default.
- W2800443451 cites W2047837810 @default.
- W2800443451 cites W2057797785 @default.
- W2800443451 cites W2069057356 @default.
- W2800443451 cites W2073166362 @default.
- W2800443451 cites W2073914950 @default.
- W2800443451 cites W2075528311 @default.
- W2800443451 cites W2080413358 @default.
- W2800443451 cites W2082313778 @default.
- W2800443451 cites W2085104342 @default.
- W2800443451 cites W2086914760 @default.
- W2800443451 cites W2092224475 @default.
- W2800443451 cites W2095301394 @default.
- W2800443451 cites W2097879961 @default.
- W2800443451 cites W2105518356 @default.
- W2800443451 cites W2108259061 @default.
- W2800443451 cites W2109148873 @default.
- W2800443451 cites W2110769522 @default.
- W2800443451 cites W2111269522 @default.
- W2800443451 cites W2141495777 @default.
- W2800443451 cites W2142531619 @default.
- W2800443451 cites W2144496644 @default.
- W2800443451 cites W2149933193 @default.
- W2800443451 cites W2167044875 @default.
- W2800443451 cites W2169596848 @default.
- W2800443451 cites W2171653202 @default.
- W2800443451 cites W2316291708 @default.
- W2800443451 cites W2333106871 @default.
- W2800443451 cites W2497231365 @default.
- W2800443451 cites W251604152 @default.
- W2800443451 cites W2799137445 @default.
- W2800443451 cites W642509312 @default.
- W2800443451 cites W19638779 @default.
- W2800443451 cites W2068327526 @default.
- W2800443451 hasPublicationYear "2008" @default.
- W2800443451 type Work @default.
- W2800443451 sameAs 2800443451 @default.
- W2800443451 citedByCount "3" @default.
- W2800443451 countsByYear W28004434512014 @default.
- W2800443451 countsByYear W28004434512015 @default.
- W2800443451 countsByYear W28004434512018 @default.
- W2800443451 crossrefType "journal-article" @default.
- W2800443451 hasAuthorship W2800443451A5026303943 @default.
- W2800443451 hasConcept C105795698 @default.
- W2800443451 hasConcept C118615104 @default.
- W2800443451 hasConcept C121332964 @default.
- W2800443451 hasConcept C127413603 @default.
- W2800443451 hasConcept C129848803 @default.
- W2800443451 hasConcept C146978453 @default.
- W2800443451 hasConcept C152361515 @default.
- W2800443451 hasConcept C154945302 @default.
- W2800443451 hasConcept C169857963 @default.
- W2800443451 hasConcept C179254644 @default.
- W2800443451 hasConcept C185429906 @default.
- W2800443451 hasConcept C203595873 @default.
- W2800443451 hasConcept C2776436953 @default.
- W2800443451 hasConcept C28826006 @default.
- W2800443451 hasConcept C33923547 @default.
- W2800443451 hasConcept C41008148 @default.
- W2800443451 hasConcept C41426520 @default.
- W2800443451 hasConcept C65778772 @default.
- W2800443451 hasConcept C74650414 @default.