Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800452457> ?p ?o ?g. }
- W2800452457 endingPage "1401" @default.
- W2800452457 startingPage "1394" @default.
- W2800452457 abstract "Background and Purpose— Treatment options for patients with acute ischemic stroke depend on the volume of salvageable tissue. This volume assessment is currently based on fixed thresholds and single imagine modalities, limiting accuracy. We wish to develop and validate a predictive model capable of automatically identifying and combining acute imaging features to accurately predict final lesion volume. Methods— Using acute magnetic resonance imaging, we developed and trained a deep convolutional neural network (CNN deep ) to predict final imaging outcome. A total of 222 patients were included, of which 187 were treated with rtPA (recombinant tissue-type plasminogen activator). The performance of CNN deep was compared with a shallow CNN based on the perfusion-weighted imaging biomarker Tmax (CNN Tmax ), a shallow CNN based on a combination of 9 different biomarkers (CNN shallow ), a generalized linear model, and thresholding of the diffusion-weighted imaging biomarker apparent diffusion coefficient (ADC) at 600×10 −6 mm 2 /s (ADC thres ). To assess whether CNN deep is capable of differentiating outcomes of ±intravenous rtPA, patients not receiving intravenous rtPA were included to train CNN deep, −rtpa to access a treatment effect. The networks’ performances were evaluated using visual inspection, area under the receiver operating characteristic curve (AUC), and contrast. Results— CNN deep yields significantly better performance in predicting final outcome (AUC=0.88±0.12) than generalized linear model (AUC=0.78±0.12; P =0.005), CNN Tmax (AUC=0.72±0.14; P <0.003), and ADC thres (AUC=0.66±0.13; P <0.0001) and a substantially better performance than CNN shallow (AUC=0.85±0.11; P =0.063). Measured by contrast, CNN deep improves the predictions significantly, showing superiority to all other methods ( P ≤0.003). CNN deep also seems to be able to differentiate outcomes based on treatment strategy with the volume of final infarct being significantly different ( P =0.048). Conclusions— The considerable prediction improvement accuracy over current state of the art increases the potential for automated decision support in providing recommendations for personalized treatment plans." @default.
- W2800452457 created "2018-05-17" @default.
- W2800452457 creator A5000010107 @default.
- W2800452457 creator A5020050659 @default.
- W2800452457 creator A5064118654 @default.
- W2800452457 creator A5085532914 @default.
- W2800452457 date "2018-06-01" @default.
- W2800452457 modified "2023-10-14" @default.
- W2800452457 title "Prediction of Tissue Outcome and Assessment of Treatment Effect in Acute Ischemic Stroke Using Deep Learning" @default.
- W2800452457 cites W1891376463 @default.
- W2800452457 cites W1963968059 @default.
- W2800452457 cites W1995046979 @default.
- W2800452457 cites W2018577646 @default.
- W2800452457 cites W2023205978 @default.
- W2800452457 cites W2024554845 @default.
- W2800452457 cites W2032173134 @default.
- W2800452457 cites W2041635902 @default.
- W2800452457 cites W2073981577 @default.
- W2800452457 cites W2086121111 @default.
- W2800452457 cites W2088344008 @default.
- W2800452457 cites W2099309617 @default.
- W2800452457 cites W2102958212 @default.
- W2800452457 cites W2104299144 @default.
- W2800452457 cites W2123351961 @default.
- W2800452457 cites W2126358165 @default.
- W2800452457 cites W2142624163 @default.
- W2800452457 cites W2156896333 @default.
- W2800452457 cites W2157135059 @default.
- W2800452457 cites W2169913685 @default.
- W2800452457 cites W2217077692 @default.
- W2800452457 cites W2466943523 @default.
- W2800452457 cites W2489968831 @default.
- W2800452457 cites W2963881378 @default.
- W2800452457 doi "https://doi.org/10.1161/strokeaha.117.019740" @default.
- W2800452457 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29720437" @default.
- W2800452457 hasPublicationYear "2018" @default.
- W2800452457 type Work @default.
- W2800452457 sameAs 2800452457 @default.
- W2800452457 citedByCount "140" @default.
- W2800452457 countsByYear W28004524572018 @default.
- W2800452457 countsByYear W28004524572019 @default.
- W2800452457 countsByYear W28004524572020 @default.
- W2800452457 countsByYear W28004524572021 @default.
- W2800452457 countsByYear W28004524572022 @default.
- W2800452457 countsByYear W28004524572023 @default.
- W2800452457 crossrefType "journal-article" @default.
- W2800452457 hasAuthorship W2800452457A5000010107 @default.
- W2800452457 hasAuthorship W2800452457A5020050659 @default.
- W2800452457 hasAuthorship W2800452457A5064118654 @default.
- W2800452457 hasAuthorship W2800452457A5085532914 @default.
- W2800452457 hasBestOaLocation W28004524571 @default.
- W2800452457 hasConcept C108583219 @default.
- W2800452457 hasConcept C126322002 @default.
- W2800452457 hasConcept C126838900 @default.
- W2800452457 hasConcept C127413603 @default.
- W2800452457 hasConcept C143409427 @default.
- W2800452457 hasConcept C154945302 @default.
- W2800452457 hasConcept C2779581417 @default.
- W2800452457 hasConcept C2780645631 @default.
- W2800452457 hasConcept C2989005 @default.
- W2800452457 hasConcept C41008148 @default.
- W2800452457 hasConcept C45664433 @default.
- W2800452457 hasConcept C500558357 @default.
- W2800452457 hasConcept C58471807 @default.
- W2800452457 hasConcept C70816921 @default.
- W2800452457 hasConcept C71924100 @default.
- W2800452457 hasConcept C76318530 @default.
- W2800452457 hasConcept C78519656 @default.
- W2800452457 hasConcept C81363708 @default.
- W2800452457 hasConceptScore W2800452457C108583219 @default.
- W2800452457 hasConceptScore W2800452457C126322002 @default.
- W2800452457 hasConceptScore W2800452457C126838900 @default.
- W2800452457 hasConceptScore W2800452457C127413603 @default.
- W2800452457 hasConceptScore W2800452457C143409427 @default.
- W2800452457 hasConceptScore W2800452457C154945302 @default.
- W2800452457 hasConceptScore W2800452457C2779581417 @default.
- W2800452457 hasConceptScore W2800452457C2780645631 @default.
- W2800452457 hasConceptScore W2800452457C2989005 @default.
- W2800452457 hasConceptScore W2800452457C41008148 @default.
- W2800452457 hasConceptScore W2800452457C45664433 @default.
- W2800452457 hasConceptScore W2800452457C500558357 @default.
- W2800452457 hasConceptScore W2800452457C58471807 @default.
- W2800452457 hasConceptScore W2800452457C70816921 @default.
- W2800452457 hasConceptScore W2800452457C71924100 @default.
- W2800452457 hasConceptScore W2800452457C76318530 @default.
- W2800452457 hasConceptScore W2800452457C78519656 @default.
- W2800452457 hasConceptScore W2800452457C81363708 @default.
- W2800452457 hasIssue "6" @default.
- W2800452457 hasLocation W28004524571 @default.
- W2800452457 hasLocation W28004524572 @default.
- W2800452457 hasOpenAccess W2800452457 @default.
- W2800452457 hasPrimaryLocation W28004524571 @default.
- W2800452457 hasRelatedWork W2008911041 @default.
- W2800452457 hasRelatedWork W2051966709 @default.
- W2800452457 hasRelatedWork W2373132269 @default.
- W2800452457 hasRelatedWork W2392162854 @default.
- W2800452457 hasRelatedWork W2744023513 @default.
- W2800452457 hasRelatedWork W3111518386 @default.