Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800481703> ?p ?o ?g. }
- W2800481703 endingPage "1068" @default.
- W2800481703 startingPage "1068" @default.
- W2800481703 abstract "Water demand forecasting applies data supports for the scheduling and decision-making of urban water supply systems. In this study, a new dual-scale deep belief network (DSDBN) approach for daily urban water demand forecasting was proposed. Original daily water demand time series was decomposed into several intrinsic mode functions (IMFs) and one residue component with ensemble empirical mode decomposition (EEMD) technique. Stochastic and deterministic terms were reconstructed through analyzing the frequency characteristics of IMFs and residue using generalized Fourier transform. The deep belief network (DBN) model was used for prediction using the two feature terms. The outputs of the double DBNs are summed as the final forecasting results. Historical daily water demand datasets from an urban waterworks in Zhuzhou, China, were investigated by the proposed DSDBN model. The mean absolute percentage error (MAPE), normalized root-mean-square error (NRMSE), correlation coefficient (CC) and determination coefficient (DC) were used as evaluation criteria. The results were compared with the autoregressive integrated moving average (ARIMA) model, feed forward neural network (FFNN) model, support vector regression (SVR) model, EEMD and their combinations, and single DBN model. The results obtained in the test period indicate that the proposed model has the smallest MAPE and NRMSE values of 1.291099 and 0.016625, respectively, and the largest CC and DC values of 0.976528 and 0.953512, respectively. Therefore, the proposed DSDBN method is a useful tool for daily urban water demand forecasting and outperforms other models in common use." @default.
- W2800481703 created "2018-05-17" @default.
- W2800481703 creator A5004043128 @default.
- W2800481703 creator A5004481600 @default.
- W2800481703 creator A5037458498 @default.
- W2800481703 creator A5054112314 @default.
- W2800481703 date "2018-04-26" @default.
- W2800481703 modified "2023-10-04" @default.
- W2800481703 title "A Novel Dual-Scale Deep Belief Network Method for Daily Urban Water Demand Forecasting" @default.
- W2800481703 cites W1518635102 @default.
- W2800481703 cites W1854912902 @default.
- W2800481703 cites W1964812476 @default.
- W2800481703 cites W1974853958 @default.
- W2800481703 cites W1979919415 @default.
- W2800481703 cites W1991155410 @default.
- W2800481703 cites W1993882792 @default.
- W2800481703 cites W2007221293 @default.
- W2800481703 cites W2008868646 @default.
- W2800481703 cites W2031762450 @default.
- W2800481703 cites W2033904036 @default.
- W2800481703 cites W2045256105 @default.
- W2800481703 cites W2062981820 @default.
- W2800481703 cites W2064630666 @default.
- W2800481703 cites W2067183857 @default.
- W2800481703 cites W2081670007 @default.
- W2800481703 cites W2083022762 @default.
- W2800481703 cites W2087541440 @default.
- W2800481703 cites W2090424610 @default.
- W2800481703 cites W2106665847 @default.
- W2800481703 cites W2112602938 @default.
- W2800481703 cites W2120390927 @default.
- W2800481703 cites W2130313186 @default.
- W2800481703 cites W2134502076 @default.
- W2800481703 cites W2136922672 @default.
- W2800481703 cites W2142635246 @default.
- W2800481703 cites W2154892677 @default.
- W2800481703 cites W2181125631 @default.
- W2800481703 cites W2183697171 @default.
- W2800481703 cites W222543348 @default.
- W2800481703 cites W2296609147 @default.
- W2800481703 cites W2329476579 @default.
- W2800481703 cites W2490223215 @default.
- W2800481703 cites W2511683089 @default.
- W2800481703 cites W2589808763 @default.
- W2800481703 cites W2613650002 @default.
- W2800481703 cites W2746111230 @default.
- W2800481703 cites W2754358410 @default.
- W2800481703 cites W2768344282 @default.
- W2800481703 cites W2785367375 @default.
- W2800481703 doi "https://doi.org/10.3390/en11051068" @default.
- W2800481703 hasPublicationYear "2018" @default.
- W2800481703 type Work @default.
- W2800481703 sameAs 2800481703 @default.
- W2800481703 citedByCount "22" @default.
- W2800481703 countsByYear W28004817032019 @default.
- W2800481703 countsByYear W28004817032020 @default.
- W2800481703 countsByYear W28004817032021 @default.
- W2800481703 countsByYear W28004817032022 @default.
- W2800481703 countsByYear W28004817032023 @default.
- W2800481703 crossrefType "journal-article" @default.
- W2800481703 hasAuthorship W2800481703A5004043128 @default.
- W2800481703 hasAuthorship W2800481703A5004481600 @default.
- W2800481703 hasAuthorship W2800481703A5037458498 @default.
- W2800481703 hasAuthorship W2800481703A5054112314 @default.
- W2800481703 hasBestOaLocation W28004817031 @default.
- W2800481703 hasConcept C105795698 @default.
- W2800481703 hasConcept C112633086 @default.
- W2800481703 hasConcept C12267149 @default.
- W2800481703 hasConcept C139945424 @default.
- W2800481703 hasConcept C150217764 @default.
- W2800481703 hasConcept C151406439 @default.
- W2800481703 hasConcept C154945302 @default.
- W2800481703 hasConcept C159877910 @default.
- W2800481703 hasConcept C24338571 @default.
- W2800481703 hasConcept C25570617 @default.
- W2800481703 hasConcept C2780092901 @default.
- W2800481703 hasConcept C33923547 @default.
- W2800481703 hasConcept C41008148 @default.
- W2800481703 hasConcept C50644808 @default.
- W2800481703 hasConcept C74883015 @default.
- W2800481703 hasConcept C97385483 @default.
- W2800481703 hasConceptScore W2800481703C105795698 @default.
- W2800481703 hasConceptScore W2800481703C112633086 @default.
- W2800481703 hasConceptScore W2800481703C12267149 @default.
- W2800481703 hasConceptScore W2800481703C139945424 @default.
- W2800481703 hasConceptScore W2800481703C150217764 @default.
- W2800481703 hasConceptScore W2800481703C151406439 @default.
- W2800481703 hasConceptScore W2800481703C154945302 @default.
- W2800481703 hasConceptScore W2800481703C159877910 @default.
- W2800481703 hasConceptScore W2800481703C24338571 @default.
- W2800481703 hasConceptScore W2800481703C25570617 @default.
- W2800481703 hasConceptScore W2800481703C2780092901 @default.
- W2800481703 hasConceptScore W2800481703C33923547 @default.
- W2800481703 hasConceptScore W2800481703C41008148 @default.
- W2800481703 hasConceptScore W2800481703C50644808 @default.
- W2800481703 hasConceptScore W2800481703C74883015 @default.
- W2800481703 hasConceptScore W2800481703C97385483 @default.
- W2800481703 hasIssue "5" @default.