Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800574443> ?p ?o ?g. }
- W2800574443 abstract "Phenotyping with proximal sensors allow high-precision measurements of plant traits both in the controlled conditions and in the field. In this work, using machine learning, an integrated analysis was done from the data obtained from spectroradiometer, infrared thermometer and chlorophyll fluorescence measurements to identify most predictive proxy measurements for studying Septoria tritici blotch (STB) disease of wheat. The Random Forest (RF) models for chlorosis and necrosis identified photosystem II quantum yield (QY) and vegetative indices (VIs) associated with the biochemical composition of leaves as the top predictive variables for identifying disease symptoms. The RF model for chlorosis was validated with a validation set (R2 0.80) and in an independent test set (R2 0.55). Based on the results, it can be concluded that the proxy measurements for photosystem II, chlorophyll content, carotenoid and anthocyanin levels and leaf surface temperature can be successfully used to detect STB. Further validation of these results in the field will enable application of these predictive variables for detection of STB in the field." @default.
- W2800574443 created "2018-05-17" @default.
- W2800574443 creator A5010679735 @default.
- W2800574443 creator A5015875526 @default.
- W2800574443 creator A5034090032 @default.
- W2800574443 creator A5053284631 @default.
- W2800574443 date "2018-05-23" @default.
- W2800574443 modified "2023-10-17" @default.
- W2800574443 title "Proximal Phenotyping and Machine Learning Methods to Identify Septoria Tritici Blotch Disease Symptoms in Wheat" @default.
- W2800574443 cites W1520812622 @default.
- W2800574443 cites W1592496692 @default.
- W2800574443 cites W1970992071 @default.
- W2800574443 cites W1980764368 @default.
- W2800574443 cites W1990488877 @default.
- W2800574443 cites W1991968907 @default.
- W2800574443 cites W2003724897 @default.
- W2800574443 cites W2004732416 @default.
- W2800574443 cites W2009318200 @default.
- W2800574443 cites W2010633042 @default.
- W2800574443 cites W2017686560 @default.
- W2800574443 cites W2018170267 @default.
- W2800574443 cites W2028606616 @default.
- W2800574443 cites W2036003376 @default.
- W2800574443 cites W2040465759 @default.
- W2800574443 cites W2051419256 @default.
- W2800574443 cites W2055963101 @default.
- W2800574443 cites W2068778426 @default.
- W2800574443 cites W2068784360 @default.
- W2800574443 cites W2071519467 @default.
- W2800574443 cites W2082436271 @default.
- W2800574443 cites W2086372322 @default.
- W2800574443 cites W2089945415 @default.
- W2800574443 cites W2098566984 @default.
- W2800574443 cites W2099400014 @default.
- W2800574443 cites W2103959917 @default.
- W2800574443 cites W2114865230 @default.
- W2800574443 cites W2125257725 @default.
- W2800574443 cites W2137608957 @default.
- W2800574443 cites W2139787575 @default.
- W2800574443 cites W2147809505 @default.
- W2800574443 cites W2150618178 @default.
- W2800574443 cites W2151177060 @default.
- W2800574443 cites W2161765830 @default.
- W2800574443 cites W2166516660 @default.
- W2800574443 cites W2185489349 @default.
- W2800574443 cites W2217251267 @default.
- W2800574443 cites W2254052932 @default.
- W2800574443 cites W2339350771 @default.
- W2800574443 cites W2519444189 @default.
- W2800574443 cites W2537906254 @default.
- W2800574443 cites W2761176843 @default.
- W2800574443 cites W2790437429 @default.
- W2800574443 cites W2800025243 @default.
- W2800574443 cites W566471755 @default.
- W2800574443 cites W610160850 @default.
- W2800574443 cites W627727981 @default.
- W2800574443 cites W842719142 @default.
- W2800574443 doi "https://doi.org/10.3389/fpls.2018.00685" @default.
- W2800574443 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5974968" @default.
- W2800574443 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29875788" @default.
- W2800574443 hasPublicationYear "2018" @default.
- W2800574443 type Work @default.
- W2800574443 sameAs 2800574443 @default.
- W2800574443 citedByCount "37" @default.
- W2800574443 countsByYear W28005744432018 @default.
- W2800574443 countsByYear W28005744432019 @default.
- W2800574443 countsByYear W28005744432020 @default.
- W2800574443 countsByYear W28005744432021 @default.
- W2800574443 countsByYear W28005744432022 @default.
- W2800574443 countsByYear W28005744432023 @default.
- W2800574443 crossrefType "journal-article" @default.
- W2800574443 hasAuthorship W2800574443A5010679735 @default.
- W2800574443 hasAuthorship W2800574443A5015875526 @default.
- W2800574443 hasAuthorship W2800574443A5034090032 @default.
- W2800574443 hasAuthorship W2800574443A5053284631 @default.
- W2800574443 hasBestOaLocation W28005744431 @default.
- W2800574443 hasConcept C144027150 @default.
- W2800574443 hasConcept C183688256 @default.
- W2800574443 hasConcept C24630173 @default.
- W2800574443 hasConcept C2776008901 @default.
- W2800574443 hasConcept C2776373379 @default.
- W2800574443 hasConcept C2776411976 @default.
- W2800574443 hasConcept C59822182 @default.
- W2800574443 hasConcept C6557445 @default.
- W2800574443 hasConcept C80298142 @default.
- W2800574443 hasConcept C86803240 @default.
- W2800574443 hasConceptScore W2800574443C144027150 @default.
- W2800574443 hasConceptScore W2800574443C183688256 @default.
- W2800574443 hasConceptScore W2800574443C24630173 @default.
- W2800574443 hasConceptScore W2800574443C2776008901 @default.
- W2800574443 hasConceptScore W2800574443C2776373379 @default.
- W2800574443 hasConceptScore W2800574443C2776411976 @default.
- W2800574443 hasConceptScore W2800574443C59822182 @default.
- W2800574443 hasConceptScore W2800574443C6557445 @default.
- W2800574443 hasConceptScore W2800574443C80298142 @default.
- W2800574443 hasConceptScore W2800574443C86803240 @default.
- W2800574443 hasLocation W28005744431 @default.
- W2800574443 hasLocation W28005744432 @default.
- W2800574443 hasLocation W28005744433 @default.
- W2800574443 hasLocation W28005744434 @default.