Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800574913> ?p ?o ?g. }
- W2800574913 endingPage "397" @default.
- W2800574913 startingPage "393" @default.
- W2800574913 abstract "BACKGROUND The goal of this study was to integrate temporal and weather data in order to create an artificial neural network (ANN) to predict trauma volume, the number of emergent operative cases, and average daily acuity at a Level I trauma center. METHODS Trauma admission data from Trauma Registry of the American College of Surgeons and weather data from the National Oceanic and Atmospheric Administration was collected for all adult trauma patients from July 2013-June 2016. The ANN was constructed using temporal (time, day of week), and weather factors (daily high, active precipitation) to predict four points of daily trauma activity: number of traumas, number of penetrating traumas, average Injury Severity Score (ISS), and number of immediate operative cases per day. We trained a two-layer feed-forward network with 10 sigmoid hidden neurons via the Levenberg-Marquardt back propagation algorithm, and performed k-fold cross validation and accuracy calculations on 100 randomly generated partitions. RESULTS Ten thousand six hundred twelve patients over 1,096 days were identified. The ANN accurately predicted the daily trauma distribution in terms of number of traumas, number of penetrating traumas, number of OR cases, and average daily ISS (combined training correlation coefficient r = 0.9018 ± 0.002; validation r = 0.8899 ± 0.005; testing r = 0.8940 ± 0.006). CONCLUSION We were able to successfully predict trauma and emergent operative volume, and acuity using an ANN by integrating local weather and trauma admission data from a Level I center. As an example, for June 30, 2016, it predicted 9.93 traumas (actual: 10), and a mean ISS of 15.99 (actual: 13.12). This may prove useful for predicting trauma needs across the system and hospital administration when allocating limited resources. LEVEL OF EVIDENCE Prognostic/epidemiological, level III." @default.
- W2800574913 created "2018-05-17" @default.
- W2800574913 creator A5001028785 @default.
- W2800574913 creator A5028592475 @default.
- W2800574913 creator A5029479219 @default.
- W2800574913 creator A5035312566 @default.
- W2800574913 creator A5044303858 @default.
- W2800574913 creator A5053576601 @default.
- W2800574913 date "2018-08-01" @default.
- W2800574913 modified "2023-10-15" @default.
- W2800574913 title "Artificial intelligence can predict daily trauma volume and average acuity" @default.
- W2800574913 cites W1518653822 @default.
- W2800574913 cites W1557523978 @default.
- W2800574913 cites W1794427698 @default.
- W2800574913 cites W1990510676 @default.
- W2800574913 cites W2022882542 @default.
- W2800574913 cites W2055325745 @default.
- W2800574913 cites W2061645216 @default.
- W2800574913 cites W2062848325 @default.
- W2800574913 cites W2068613509 @default.
- W2800574913 cites W2069553027 @default.
- W2800574913 cites W2081312475 @default.
- W2800574913 cites W2096366216 @default.
- W2800574913 cites W2104026855 @default.
- W2800574913 cites W2105503412 @default.
- W2800574913 cites W2115553777 @default.
- W2800574913 cites W2116716289 @default.
- W2800574913 cites W2123715374 @default.
- W2800574913 cites W2148254543 @default.
- W2800574913 cites W2151068762 @default.
- W2800574913 cites W2155806928 @default.
- W2800574913 cites W2160270375 @default.
- W2800574913 cites W2162897441 @default.
- W2800574913 cites W2171212908 @default.
- W2800574913 cites W2243523957 @default.
- W2800574913 cites W2324257729 @default.
- W2800574913 cites W2329260828 @default.
- W2800574913 cites W2343242018 @default.
- W2800574913 cites W2480666943 @default.
- W2800574913 cites W2537412132 @default.
- W2800574913 cites W2556222449 @default.
- W2800574913 cites W2767608590 @default.
- W2800574913 cites W4293108385 @default.
- W2800574913 doi "https://doi.org/10.1097/ta.0000000000001947" @default.
- W2800574913 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29677082" @default.
- W2800574913 hasPublicationYear "2018" @default.
- W2800574913 type Work @default.
- W2800574913 sameAs 2800574913 @default.
- W2800574913 citedByCount "14" @default.
- W2800574913 countsByYear W28005749132019 @default.
- W2800574913 countsByYear W28005749132021 @default.
- W2800574913 countsByYear W28005749132022 @default.
- W2800574913 countsByYear W28005749132023 @default.
- W2800574913 crossrefType "journal-article" @default.
- W2800574913 hasAuthorship W2800574913A5001028785 @default.
- W2800574913 hasAuthorship W2800574913A5028592475 @default.
- W2800574913 hasAuthorship W2800574913A5029479219 @default.
- W2800574913 hasAuthorship W2800574913A5035312566 @default.
- W2800574913 hasAuthorship W2800574913A5044303858 @default.
- W2800574913 hasAuthorship W2800574913A5053576601 @default.
- W2800574913 hasConcept C141071460 @default.
- W2800574913 hasConcept C154945302 @default.
- W2800574913 hasConcept C167135981 @default.
- W2800574913 hasConcept C190385971 @default.
- W2800574913 hasConcept C194828623 @default.
- W2800574913 hasConcept C2780110798 @default.
- W2800574913 hasConcept C3017944768 @default.
- W2800574913 hasConcept C41008148 @default.
- W2800574913 hasConcept C50644808 @default.
- W2800574913 hasConcept C71924100 @default.
- W2800574913 hasConcept C81388566 @default.
- W2800574913 hasConcept C85004164 @default.
- W2800574913 hasConceptScore W2800574913C141071460 @default.
- W2800574913 hasConceptScore W2800574913C154945302 @default.
- W2800574913 hasConceptScore W2800574913C167135981 @default.
- W2800574913 hasConceptScore W2800574913C190385971 @default.
- W2800574913 hasConceptScore W2800574913C194828623 @default.
- W2800574913 hasConceptScore W2800574913C2780110798 @default.
- W2800574913 hasConceptScore W2800574913C3017944768 @default.
- W2800574913 hasConceptScore W2800574913C41008148 @default.
- W2800574913 hasConceptScore W2800574913C50644808 @default.
- W2800574913 hasConceptScore W2800574913C71924100 @default.
- W2800574913 hasConceptScore W2800574913C81388566 @default.
- W2800574913 hasConceptScore W2800574913C85004164 @default.
- W2800574913 hasIssue "2" @default.
- W2800574913 hasLocation W28005749131 @default.
- W2800574913 hasLocation W28005749132 @default.
- W2800574913 hasOpenAccess W2800574913 @default.
- W2800574913 hasPrimaryLocation W28005749131 @default.
- W2800574913 hasRelatedWork W1765726613 @default.
- W2800574913 hasRelatedWork W1988108449 @default.
- W2800574913 hasRelatedWork W2022716315 @default.
- W2800574913 hasRelatedWork W2060311198 @default.
- W2800574913 hasRelatedWork W2077389224 @default.
- W2800574913 hasRelatedWork W2078258691 @default.
- W2800574913 hasRelatedWork W2092570198 @default.
- W2800574913 hasRelatedWork W2891625076 @default.
- W2800574913 hasRelatedWork W3170224572 @default.