Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800620127> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2800620127 endingPage "159" @default.
- W2800620127 startingPage "148" @default.
- W2800620127 abstract "Multi-step forecasting is very challenging and there are a lack of studies available that consist of machine learning algorithms and methodologies for multi-step forecasting. It has also been found that lack of collaborations between these different fields is creating a barrier to further developments. In this paper, multi-step time series forecasting are performed on three nonlinear electric load datasets extracted from Open-Power-System-Data.org using two machine learning models. Multi-step forecasting performance of Auto-Regressive Integrated Moving Average (ARIMA) and Long-Short-Term-Memory (LSTM) based Recurrent Neural Networks (RNN) models are compared. Comparative analysis of forecasting performance of the two models reveals that the LSTM model has superior performance in comparison to the ARIMA model for multi-step electric load forecasting." @default.
- W2800620127 created "2018-05-17" @default.
- W2800620127 creator A5032722788 @default.
- W2800620127 creator A5040945356 @default.
- W2800620127 creator A5060002817 @default.
- W2800620127 date "2018-01-01" @default.
- W2800620127 modified "2023-10-05" @default.
- W2800620127 title "Multi-step Time Series Forecasting of Electric Load Using Machine Learning Models" @default.
- W2800620127 cites W1525361479 @default.
- W2800620127 cites W1968253958 @default.
- W2800620127 cites W1977587074 @default.
- W2800620127 cites W1980462675 @default.
- W2800620127 cites W1984069615 @default.
- W2800620127 cites W2004353783 @default.
- W2800620127 cites W2014928429 @default.
- W2800620127 cites W2020416411 @default.
- W2800620127 cites W2064675550 @default.
- W2800620127 cites W2085444045 @default.
- W2800620127 cites W2095551575 @default.
- W2800620127 cites W2098985354 @default.
- W2800620127 cites W2101806981 @default.
- W2800620127 cites W2103226621 @default.
- W2800620127 cites W2107878631 @default.
- W2800620127 cites W2121844625 @default.
- W2800620127 cites W2157398049 @default.
- W2800620127 cites W2181523240 @default.
- W2800620127 cites W2293634267 @default.
- W2800620127 cites W2294097774 @default.
- W2800620127 cites W2533328922 @default.
- W2800620127 cites W2560099312 @default.
- W2800620127 cites W2572939427 @default.
- W2800620127 cites W2810470535 @default.
- W2800620127 cites W3104996215 @default.
- W2800620127 cites W4211232265 @default.
- W2800620127 cites W4249179470 @default.
- W2800620127 cites W4253226372 @default.
- W2800620127 doi "https://doi.org/10.1007/978-3-319-91253-0_15" @default.
- W2800620127 hasPublicationYear "2018" @default.
- W2800620127 type Work @default.
- W2800620127 sameAs 2800620127 @default.
- W2800620127 citedByCount "28" @default.
- W2800620127 countsByYear W28006201272019 @default.
- W2800620127 countsByYear W28006201272020 @default.
- W2800620127 countsByYear W28006201272021 @default.
- W2800620127 countsByYear W28006201272022 @default.
- W2800620127 countsByYear W28006201272023 @default.
- W2800620127 crossrefType "book-chapter" @default.
- W2800620127 hasAuthorship W2800620127A5032722788 @default.
- W2800620127 hasAuthorship W2800620127A5040945356 @default.
- W2800620127 hasAuthorship W2800620127A5060002817 @default.
- W2800620127 hasBestOaLocation W28006201272 @default.
- W2800620127 hasConcept C119857082 @default.
- W2800620127 hasConcept C127313418 @default.
- W2800620127 hasConcept C143724316 @default.
- W2800620127 hasConcept C151406439 @default.
- W2800620127 hasConcept C151730666 @default.
- W2800620127 hasConcept C154945302 @default.
- W2800620127 hasConcept C41008148 @default.
- W2800620127 hasConceptScore W2800620127C119857082 @default.
- W2800620127 hasConceptScore W2800620127C127313418 @default.
- W2800620127 hasConceptScore W2800620127C143724316 @default.
- W2800620127 hasConceptScore W2800620127C151406439 @default.
- W2800620127 hasConceptScore W2800620127C151730666 @default.
- W2800620127 hasConceptScore W2800620127C154945302 @default.
- W2800620127 hasConceptScore W2800620127C41008148 @default.
- W2800620127 hasLocation W28006201271 @default.
- W2800620127 hasLocation W28006201272 @default.
- W2800620127 hasOpenAccess W2800620127 @default.
- W2800620127 hasPrimaryLocation W28006201271 @default.
- W2800620127 hasRelatedWork W2961085424 @default.
- W2800620127 hasRelatedWork W3046775127 @default.
- W2800620127 hasRelatedWork W3170094116 @default.
- W2800620127 hasRelatedWork W3209574120 @default.
- W2800620127 hasRelatedWork W4205958290 @default.
- W2800620127 hasRelatedWork W4213225422 @default.
- W2800620127 hasRelatedWork W4286629047 @default.
- W2800620127 hasRelatedWork W4306321456 @default.
- W2800620127 hasRelatedWork W4306674287 @default.
- W2800620127 hasRelatedWork W4224009465 @default.
- W2800620127 isParatext "false" @default.
- W2800620127 isRetracted "false" @default.
- W2800620127 magId "2800620127" @default.
- W2800620127 workType "book-chapter" @default.