Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800636134> ?p ?o ?g. }
- W2800636134 endingPage "649" @default.
- W2800636134 startingPage "642" @default.
- W2800636134 abstract "Model-based inference is an alternative to probability-based inference for small areas or remote areas for which probability sampling is difficult. Model-based mean square error estimators incorporate three components: prediction covariance, residual variance, and residual covariance. The latter two components are often considered negligible, particularly for large areas, but no thresholds that justify ignoring them have been reported. The objectives of the study were threefold: (i) to compare analytical and bootstrap estimators of model parameter covariances as the primary factors affecting prediction covariance; (ii) to estimate the contribution of residual variance to overall variance; and (iii) to estimate thresholds for residual spatial correlation that justify ignoring this component. Five datasets were used, three from Europe, one from Africa, and one from North America. The dependent variable was either forest volume or biomass and the independent variables were either Landsat satellite image bands or airborne laser scanning metrics. Three conclusions were noteworthy: (i) analytical estimators of the model parameter covariances tended to be biased; (ii) the effects of residual variance were mostly negligible; and (iii) the effects of spatial correlation on residual covariance vary by multiple factors but decrease with increasing study area size. For study areas greater than 75 km 2 in size, residual covariance could generally be ignored." @default.
- W2800636134 created "2018-05-17" @default.
- W2800636134 creator A5003673355 @default.
- W2800636134 creator A5014726860 @default.
- W2800636134 creator A5018412035 @default.
- W2800636134 creator A5034250940 @default.
- W2800636134 creator A5040115327 @default.
- W2800636134 creator A5040480498 @default.
- W2800636134 creator A5042698584 @default.
- W2800636134 creator A5049729956 @default.
- W2800636134 creator A5073215366 @default.
- W2800636134 creator A5089367824 @default.
- W2800636134 date "2018-06-01" @default.
- W2800636134 modified "2023-10-02" @default.
- W2800636134 title "Assessing components of the model-based mean square error estimator for remote sensing assisted forest applications" @default.
- W2800636134 cites W1474937972 @default.
- W2800636134 cites W1842700253 @default.
- W2800636134 cites W1965710338 @default.
- W2800636134 cites W1984935883 @default.
- W2800636134 cites W2009067475 @default.
- W2800636134 cites W2017214867 @default.
- W2800636134 cites W2021623445 @default.
- W2800636134 cites W2024335547 @default.
- W2800636134 cites W2030345953 @default.
- W2800636134 cites W2033003748 @default.
- W2800636134 cites W2046735139 @default.
- W2800636134 cites W2060882825 @default.
- W2800636134 cites W2061427081 @default.
- W2800636134 cites W2070779353 @default.
- W2800636134 cites W2071251785 @default.
- W2800636134 cites W2087731647 @default.
- W2800636134 cites W2108891443 @default.
- W2800636134 cites W2110840436 @default.
- W2800636134 cites W2113410727 @default.
- W2800636134 cites W2140294823 @default.
- W2800636134 cites W2147499659 @default.
- W2800636134 cites W2156087253 @default.
- W2800636134 cites W2288393565 @default.
- W2800636134 cites W2485202016 @default.
- W2800636134 cites W2489605225 @default.
- W2800636134 cites W2499345884 @default.
- W2800636134 cites W2570161650 @default.
- W2800636134 cites W2594153125 @default.
- W2800636134 cites W2623108244 @default.
- W2800636134 cites W2735073798 @default.
- W2800636134 cites W3106889297 @default.
- W2800636134 cites W643303129 @default.
- W2800636134 doi "https://doi.org/10.1139/cjfr-2017-0396" @default.
- W2800636134 hasPublicationYear "2018" @default.
- W2800636134 type Work @default.
- W2800636134 sameAs 2800636134 @default.
- W2800636134 citedByCount "37" @default.
- W2800636134 countsByYear W28006361342019 @default.
- W2800636134 countsByYear W28006361342020 @default.
- W2800636134 countsByYear W28006361342021 @default.
- W2800636134 countsByYear W28006361342022 @default.
- W2800636134 countsByYear W28006361342023 @default.
- W2800636134 crossrefType "journal-article" @default.
- W2800636134 hasAuthorship W2800636134A5003673355 @default.
- W2800636134 hasAuthorship W2800636134A5014726860 @default.
- W2800636134 hasAuthorship W2800636134A5018412035 @default.
- W2800636134 hasAuthorship W2800636134A5034250940 @default.
- W2800636134 hasAuthorship W2800636134A5040115327 @default.
- W2800636134 hasAuthorship W2800636134A5040480498 @default.
- W2800636134 hasAuthorship W2800636134A5042698584 @default.
- W2800636134 hasAuthorship W2800636134A5049729956 @default.
- W2800636134 hasAuthorship W2800636134A5073215366 @default.
- W2800636134 hasAuthorship W2800636134A5089367824 @default.
- W2800636134 hasConcept C105795698 @default.
- W2800636134 hasConcept C106131492 @default.
- W2800636134 hasConcept C11413529 @default.
- W2800636134 hasConcept C121955636 @default.
- W2800636134 hasConcept C139945424 @default.
- W2800636134 hasConcept C140779682 @default.
- W2800636134 hasConcept C144133560 @default.
- W2800636134 hasConcept C149782125 @default.
- W2800636134 hasConcept C155512373 @default.
- W2800636134 hasConcept C178650346 @default.
- W2800636134 hasConcept C185429906 @default.
- W2800636134 hasConcept C196083921 @default.
- W2800636134 hasConcept C31972630 @default.
- W2800636134 hasConcept C33923547 @default.
- W2800636134 hasConcept C41008148 @default.
- W2800636134 hasConceptScore W2800636134C105795698 @default.
- W2800636134 hasConceptScore W2800636134C106131492 @default.
- W2800636134 hasConceptScore W2800636134C11413529 @default.
- W2800636134 hasConceptScore W2800636134C121955636 @default.
- W2800636134 hasConceptScore W2800636134C139945424 @default.
- W2800636134 hasConceptScore W2800636134C140779682 @default.
- W2800636134 hasConceptScore W2800636134C144133560 @default.
- W2800636134 hasConceptScore W2800636134C149782125 @default.
- W2800636134 hasConceptScore W2800636134C155512373 @default.
- W2800636134 hasConceptScore W2800636134C178650346 @default.
- W2800636134 hasConceptScore W2800636134C185429906 @default.
- W2800636134 hasConceptScore W2800636134C196083921 @default.
- W2800636134 hasConceptScore W2800636134C31972630 @default.
- W2800636134 hasConceptScore W2800636134C33923547 @default.
- W2800636134 hasConceptScore W2800636134C41008148 @default.