Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800707911> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W2800707911 abstract "As the 2020 roadblock approaches, the need of breakthrough in computing systems has directed researchers to novel computing paradigms. The recently emerged reservoir computing model, delayed feedback reservoir (DFR) computing, only utilizes one nonlinear neuron along with a delay loop. It not only offers the ease of hardware implementation but also enables the optimal performance contributed by the inherent delay and its rich intrinsic dynamics. The field of deep learning has attracted worldwide attention due to its hierarchical architecture that allows more efficient performance than a shallow structure. Along with our analog hardware implementation of the DFR, we investigate the possibility of merging deep learning and DFR computing systems. By evaluating the results, deep DFR models demonstrate 50%–81% better performance during training and 39%–64% performance improvement during testing than shallow leaky echo state network (ESN) model. Due to the difference in architecture, the training time of MI (multiple inputs)-deep DFR requires approximately 21% longer than that of the deep DFR model. Our approach offers the great potential and promise in the realization of analog hardware implementations for deep DFR systems." @default.
- W2800707911 created "2018-05-17" @default.
- W2800707911 creator A5018632091 @default.
- W2800707911 creator A5024813818 @default.
- W2800707911 creator A5027237940 @default.
- W2800707911 creator A5082108426 @default.
- W2800707911 date "2018-03-01" @default.
- W2800707911 modified "2023-10-11" @default.
- W2800707911 title "A deep learning based approach for analog hardware implementation of delayed feedback reservoir computing system" @default.
- W2800707911 cites W1805003880 @default.
- W2800707911 cites W1971066582 @default.
- W2800707911 cites W1977664984 @default.
- W2800707911 cites W1995341919 @default.
- W2800707911 cites W2001263627 @default.
- W2800707911 cites W2016008736 @default.
- W2800707911 cites W2094631910 @default.
- W2800707911 cites W2127073620 @default.
- W2800707911 cites W2163062501 @default.
- W2800707911 cites W2513148968 @default.
- W2800707911 cites W2582417415 @default.
- W2800707911 cites W2735853474 @default.
- W2800707911 cites W2919115771 @default.
- W2800707911 cites W3028014973 @default.
- W2800707911 doi "https://doi.org/10.1109/isqed.2018.8357305" @default.
- W2800707911 hasPublicationYear "2018" @default.
- W2800707911 type Work @default.
- W2800707911 sameAs 2800707911 @default.
- W2800707911 citedByCount "23" @default.
- W2800707911 countsByYear W28007079112018 @default.
- W2800707911 countsByYear W28007079112019 @default.
- W2800707911 countsByYear W28007079112020 @default.
- W2800707911 countsByYear W28007079112021 @default.
- W2800707911 countsByYear W28007079112022 @default.
- W2800707911 countsByYear W28007079112023 @default.
- W2800707911 crossrefType "proceedings-article" @default.
- W2800707911 hasAuthorship W2800707911A5018632091 @default.
- W2800707911 hasAuthorship W2800707911A5024813818 @default.
- W2800707911 hasAuthorship W2800707911A5027237940 @default.
- W2800707911 hasAuthorship W2800707911A5082108426 @default.
- W2800707911 hasConcept C108583219 @default.
- W2800707911 hasConcept C118524514 @default.
- W2800707911 hasConcept C135796866 @default.
- W2800707911 hasConcept C147168706 @default.
- W2800707911 hasConcept C149635348 @default.
- W2800707911 hasConcept C154945302 @default.
- W2800707911 hasConcept C173608175 @default.
- W2800707911 hasConcept C41008148 @default.
- W2800707911 hasConcept C459310 @default.
- W2800707911 hasConcept C50644808 @default.
- W2800707911 hasConcept C9390403 @default.
- W2800707911 hasConceptScore W2800707911C108583219 @default.
- W2800707911 hasConceptScore W2800707911C118524514 @default.
- W2800707911 hasConceptScore W2800707911C135796866 @default.
- W2800707911 hasConceptScore W2800707911C147168706 @default.
- W2800707911 hasConceptScore W2800707911C149635348 @default.
- W2800707911 hasConceptScore W2800707911C154945302 @default.
- W2800707911 hasConceptScore W2800707911C173608175 @default.
- W2800707911 hasConceptScore W2800707911C41008148 @default.
- W2800707911 hasConceptScore W2800707911C459310 @default.
- W2800707911 hasConceptScore W2800707911C50644808 @default.
- W2800707911 hasConceptScore W2800707911C9390403 @default.
- W2800707911 hasLocation W28007079111 @default.
- W2800707911 hasOpenAccess W2800707911 @default.
- W2800707911 hasPrimaryLocation W28007079111 @default.
- W2800707911 hasRelatedWork W2034384303 @default.
- W2800707911 hasRelatedWork W2153092996 @default.
- W2800707911 hasRelatedWork W2154371368 @default.
- W2800707911 hasRelatedWork W2344788583 @default.
- W2800707911 hasRelatedWork W2381275640 @default.
- W2800707911 hasRelatedWork W2381737837 @default.
- W2800707911 hasRelatedWork W2385361820 @default.
- W2800707911 hasRelatedWork W2523870901 @default.
- W2800707911 hasRelatedWork W2800707911 @default.
- W2800707911 hasRelatedWork W2965967938 @default.
- W2800707911 isParatext "false" @default.
- W2800707911 isRetracted "false" @default.
- W2800707911 magId "2800707911" @default.
- W2800707911 workType "article" @default.