Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800772414> ?p ?o ?g. }
- W2800772414 abstract "Periodicity is often studied in timeseries modelling with autoregressive methods but is less popular in the kernel literature, particularly for higher dimensional problems such as in textures, crystallography, and quantum mechanics. Large datasets often make modelling periodicity untenable for otherwise powerful non-parametric methods like Gaussian Processes (GPs) which typically incur an $mathcal{O}(N^3)$ computational burden and, consequently, are unable to scale to larger datasets. To this end we introduce a method termed emph{Index Set Fourier Series Features} to tractably exploit multivariate Fourier series and efficiently decompose periodic kernels on higher-dimensional data into a series of basis functions. We show that our approximation produces significantly less predictive error than alternative approaches such as those based on random Fourier features and achieves better generalisation on regression problems with periodic data." @default.
- W2800772414 created "2018-05-17" @default.
- W2800772414 creator A5033705811 @default.
- W2800772414 creator A5062619542 @default.
- W2800772414 date "2018-05-14" @default.
- W2800772414 modified "2023-09-27" @default.
- W2800772414 title "Index Set Fourier Series Features for Approximating Multi-dimensional Periodic Kernels." @default.
- W2800772414 cites W1751437809 @default.
- W2800772414 cites W1991200719 @default.
- W2800772414 cites W2015368696 @default.
- W2800772414 cites W2099768828 @default.
- W2800772414 cites W2105527258 @default.
- W2800772414 cites W2115870554 @default.
- W2800772414 cites W2118563516 @default.
- W2800772414 cites W2123395972 @default.
- W2800772414 cites W2148007822 @default.
- W2800772414 cites W2182347905 @default.
- W2800772414 cites W2300951034 @default.
- W2800772414 cites W2419089193 @default.
- W2800772414 cites W2544176167 @default.
- W2800772414 cites W2593960758 @default.
- W2800772414 cites W2616038372 @default.
- W2800772414 cites W2788908196 @default.
- W2800772414 cites W2949554124 @default.
- W2800772414 cites W2951686320 @default.
- W2800772414 cites W2952677397 @default.
- W2800772414 cites W2963282838 @default.
- W2800772414 cites W2963389768 @default.
- W2800772414 cites W339000481 @default.
- W2800772414 hasPublicationYear "2018" @default.
- W2800772414 type Work @default.
- W2800772414 sameAs 2800772414 @default.
- W2800772414 citedByCount "0" @default.
- W2800772414 crossrefType "posted-content" @default.
- W2800772414 hasAuthorship W2800772414A5033705811 @default.
- W2800772414 hasAuthorship W2800772414A5062619542 @default.
- W2800772414 hasConcept C102519508 @default.
- W2800772414 hasConcept C105795698 @default.
- W2800772414 hasConcept C11413529 @default.
- W2800772414 hasConcept C117251300 @default.
- W2800772414 hasConcept C118615104 @default.
- W2800772414 hasConcept C121332964 @default.
- W2800772414 hasConcept C134306372 @default.
- W2800772414 hasConcept C143724316 @default.
- W2800772414 hasConcept C151730666 @default.
- W2800772414 hasConcept C159877910 @default.
- W2800772414 hasConcept C163716315 @default.
- W2800772414 hasConcept C177264268 @default.
- W2800772414 hasConcept C199360897 @default.
- W2800772414 hasConcept C207864730 @default.
- W2800772414 hasConcept C2778755073 @default.
- W2800772414 hasConcept C28826006 @default.
- W2800772414 hasConcept C33923547 @default.
- W2800772414 hasConcept C41008148 @default.
- W2800772414 hasConcept C61326573 @default.
- W2800772414 hasConcept C62520636 @default.
- W2800772414 hasConcept C74193536 @default.
- W2800772414 hasConcept C86803240 @default.
- W2800772414 hasConceptScore W2800772414C102519508 @default.
- W2800772414 hasConceptScore W2800772414C105795698 @default.
- W2800772414 hasConceptScore W2800772414C11413529 @default.
- W2800772414 hasConceptScore W2800772414C117251300 @default.
- W2800772414 hasConceptScore W2800772414C118615104 @default.
- W2800772414 hasConceptScore W2800772414C121332964 @default.
- W2800772414 hasConceptScore W2800772414C134306372 @default.
- W2800772414 hasConceptScore W2800772414C143724316 @default.
- W2800772414 hasConceptScore W2800772414C151730666 @default.
- W2800772414 hasConceptScore W2800772414C159877910 @default.
- W2800772414 hasConceptScore W2800772414C163716315 @default.
- W2800772414 hasConceptScore W2800772414C177264268 @default.
- W2800772414 hasConceptScore W2800772414C199360897 @default.
- W2800772414 hasConceptScore W2800772414C207864730 @default.
- W2800772414 hasConceptScore W2800772414C2778755073 @default.
- W2800772414 hasConceptScore W2800772414C28826006 @default.
- W2800772414 hasConceptScore W2800772414C33923547 @default.
- W2800772414 hasConceptScore W2800772414C41008148 @default.
- W2800772414 hasConceptScore W2800772414C61326573 @default.
- W2800772414 hasConceptScore W2800772414C62520636 @default.
- W2800772414 hasConceptScore W2800772414C74193536 @default.
- W2800772414 hasConceptScore W2800772414C86803240 @default.
- W2800772414 hasLocation W28007724141 @default.
- W2800772414 hasOpenAccess W2800772414 @default.
- W2800772414 hasPrimaryLocation W28007724141 @default.
- W2800772414 hasRelatedWork W156952230 @default.
- W2800772414 hasRelatedWork W2229640315 @default.
- W2800772414 hasRelatedWork W2324710460 @default.
- W2800772414 hasRelatedWork W2549650688 @default.
- W2800772414 hasRelatedWork W2567117621 @default.
- W2800772414 hasRelatedWork W2738919809 @default.
- W2800772414 hasRelatedWork W2766462267 @default.
- W2800772414 hasRelatedWork W2766560513 @default.
- W2800772414 hasRelatedWork W2767848202 @default.
- W2800772414 hasRelatedWork W2775475402 @default.
- W2800772414 hasRelatedWork W2789782180 @default.
- W2800772414 hasRelatedWork W2795640673 @default.
- W2800772414 hasRelatedWork W2963271780 @default.
- W2800772414 hasRelatedWork W2963423448 @default.
- W2800772414 hasRelatedWork W3015146375 @default.
- W2800772414 hasRelatedWork W3082361689 @default.
- W2800772414 hasRelatedWork W3120913658 @default.