Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800846474> ?p ?o ?g. }
- W2800846474 endingPage "3644" @default.
- W2800846474 startingPage "3631" @default.
- W2800846474 abstract "Using mobile Light Detection and Ranging point clouds to accomplish road scene labeling tasks shows promise for a variety of applications. Most existing methods for semantic labeling of point clouds require a huge number of fully supervised point cloud scenes, where each point needs to be manually annotated with a specific category. Manually annotating each point in point cloud scenes is labor intensive and hinders practical usage of those methods. To alleviate such a huge burden of manual annotation, in this paper, we introduce an active learning method that avoids annotating the whole point cloud scenes by iteratively annotating a small portion of unlabeled supervoxels and creating a minimal manually annotated training set. In order to avoid the biased sampling existing in traditional active learning methods, a neighbor-consistency prior is exploited to select the potentially misclassified samples into the training set to improve the accuracy of the statistical model. Furthermore, lots of methods only consider short-range contextual information to conduct semantic labeling tasks, but ignore the long-range contexts among local variables. In this paper, we use a higher order Markov random field model to take into account more contexts for refining the labeling results, despite of lacking fully supervised scenes. Evaluations on three data sets show that our proposed framework achieves a high accuracy in labeling point clouds although only a small portion of labels is provided. Moreover, comparative experiments demonstrate that our proposed framework is superior to traditional sampling methods and exhibits comparable performance to those fully supervised models." @default.
- W2800846474 created "2018-05-17" @default.
- W2800846474 creator A5007144110 @default.
- W2800846474 creator A5007692376 @default.
- W2800846474 creator A5026327136 @default.
- W2800846474 creator A5031337173 @default.
- W2800846474 creator A5047386824 @default.
- W2800846474 creator A5049895708 @default.
- W2800846474 creator A5065937604 @default.
- W2800846474 date "2018-07-01" @default.
- W2800846474 modified "2023-10-17" @default.
- W2800846474 title "Semantic Labeling of Mobile LiDAR Point Clouds via Active Learning and Higher Order MRF" @default.
- W2800846474 cites W198174342 @default.
- W2800846474 cites W1983521647 @default.
- W2800846474 cites W1991234467 @default.
- W2800846474 cites W1991751483 @default.
- W2800846474 cites W2001563151 @default.
- W2800846474 cites W2008989859 @default.
- W2800846474 cites W2016860790 @default.
- W2800846474 cites W2018726624 @default.
- W2800846474 cites W2022394120 @default.
- W2800846474 cites W2042059757 @default.
- W2800846474 cites W2071007744 @default.
- W2800846474 cites W2102402541 @default.
- W2800846474 cites W2115703234 @default.
- W2800846474 cites W2116877738 @default.
- W2800846474 cites W2122992840 @default.
- W2800846474 cites W2124244761 @default.
- W2800846474 cites W2128680590 @default.
- W2800846474 cites W2135249503 @default.
- W2800846474 cites W2137199188 @default.
- W2800846474 cites W2143516773 @default.
- W2800846474 cites W2150045166 @default.
- W2800846474 cites W2154980168 @default.
- W2800846474 cites W2159213092 @default.
- W2800846474 cites W2160821342 @default.
- W2800846474 cites W2161160262 @default.
- W2800846474 cites W2169415915 @default.
- W2800846474 cites W2252723506 @default.
- W2800846474 cites W2285948548 @default.
- W2800846474 cites W2344371161 @default.
- W2800846474 cites W2395466322 @default.
- W2800846474 cites W2562874528 @default.
- W2800846474 cites W3184458996 @default.
- W2800846474 cites W4376601268 @default.
- W2800846474 doi "https://doi.org/10.1109/tgrs.2018.2802935" @default.
- W2800846474 hasPublicationYear "2018" @default.
- W2800846474 type Work @default.
- W2800846474 sameAs 2800846474 @default.
- W2800846474 citedByCount "46" @default.
- W2800846474 countsByYear W28008464742019 @default.
- W2800846474 countsByYear W28008464742020 @default.
- W2800846474 countsByYear W28008464742021 @default.
- W2800846474 countsByYear W28008464742022 @default.
- W2800846474 countsByYear W28008464742023 @default.
- W2800846474 crossrefType "journal-article" @default.
- W2800846474 hasAuthorship W2800846474A5007144110 @default.
- W2800846474 hasAuthorship W2800846474A5007692376 @default.
- W2800846474 hasAuthorship W2800846474A5026327136 @default.
- W2800846474 hasAuthorship W2800846474A5031337173 @default.
- W2800846474 hasAuthorship W2800846474A5047386824 @default.
- W2800846474 hasAuthorship W2800846474A5049895708 @default.
- W2800846474 hasAuthorship W2800846474A5065937604 @default.
- W2800846474 hasConcept C115961682 @default.
- W2800846474 hasConcept C119857082 @default.
- W2800846474 hasConcept C124504099 @default.
- W2800846474 hasConcept C127313418 @default.
- W2800846474 hasConcept C131979681 @default.
- W2800846474 hasConcept C136389625 @default.
- W2800846474 hasConcept C152565575 @default.
- W2800846474 hasConcept C153180895 @default.
- W2800846474 hasConcept C154945302 @default.
- W2800846474 hasConcept C159985019 @default.
- W2800846474 hasConcept C177264268 @default.
- W2800846474 hasConcept C192562407 @default.
- W2800846474 hasConcept C199360897 @default.
- W2800846474 hasConcept C204323151 @default.
- W2800846474 hasConcept C2524010 @default.
- W2800846474 hasConcept C2776321320 @default.
- W2800846474 hasConcept C2776436953 @default.
- W2800846474 hasConcept C2778045648 @default.
- W2800846474 hasConcept C28719098 @default.
- W2800846474 hasConcept C33923547 @default.
- W2800846474 hasConcept C41008148 @default.
- W2800846474 hasConcept C50644808 @default.
- W2800846474 hasConcept C51399673 @default.
- W2800846474 hasConcept C62649853 @default.
- W2800846474 hasConceptScore W2800846474C115961682 @default.
- W2800846474 hasConceptScore W2800846474C119857082 @default.
- W2800846474 hasConceptScore W2800846474C124504099 @default.
- W2800846474 hasConceptScore W2800846474C127313418 @default.
- W2800846474 hasConceptScore W2800846474C131979681 @default.
- W2800846474 hasConceptScore W2800846474C136389625 @default.
- W2800846474 hasConceptScore W2800846474C152565575 @default.
- W2800846474 hasConceptScore W2800846474C153180895 @default.
- W2800846474 hasConceptScore W2800846474C154945302 @default.
- W2800846474 hasConceptScore W2800846474C159985019 @default.
- W2800846474 hasConceptScore W2800846474C177264268 @default.