Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800892725> ?p ?o ?g. }
- W2800892725 endingPage "3981" @default.
- W2800892725 startingPage "3962" @default.
- W2800892725 abstract "Abstract The year to year variability of surface mixing in the Bay of Bengal (BoB) is examined with the help of an Ocean Dynamic‐Thermodynamic Model (ODTM) and observational data. The model embeds a conventional nonlinear primitive equation based reduced gravity model (RGM) with “N” active layers overlying a 1/2 quiescent layer. The model is coupled to a high‐resolution mixed layer model (MLM) to capture the physics of the mixed layer. The MLM incorporates a level‐2 turbulence closure mixing scheme based on Mellor and Yamada (1982). As a result of the coupling, our model calculates the net hydrostatic pressure as a sum of those due to the thickness of RGM layers with constant densities and due to the dynamic topography of MLM levels with variable densities. At each time step the coupling between RGM and MLM is achieved as follows: (i) a layer‐averaged tendency of momentum and tracers (i.e., temperature and salinity) of the MLM is updated to the RGM, (ii) momentum and tracers of the MLM get advected by large‐scale horizontal dynamics of the RGM, and (iii) horizontal layer divergence of the RGM aides for the vertical advection of the MLM. By virtue of this coupling, the model faithfully reproduces the seasonal cycle of temperature, salinity, sea surface height, thermocline, mixed and barrier layer thickness of the tropical Indian Ocean. A simulation with Coordinated Ocean‐Ice Reference Experiment (CORE) forcing for 15 years (from 1995 to 2009) is used as a test case to study the interannual variability (IAV) of the mixed layer depth and barrier layer thickness (BL) in BoB. The dominant modes of IAV in the BoB mixing are governed by the correspondingly varying surface momentum, heat, and fresh water fluxes with very little contribution from entrainment of heat and/or salt at the base of the mixed layer. Further, these fluxes are controlled by El Niño‐Southern Oscillation (ENSO) variability with very little influence from Indian Ocean Dipole‐Zonal Mode (IODZM). The BL IAV is predominantly controlled by precipitation forcing from ENSO. A stability analysis revealed that the turbulent kinetic energy (TKE) and the stability function ( S H ) are negatively correlated when ENSO is the dominant forcing. Such a correlation between TKE and S H is expected since unstable stratification conditions exist during positive ENSO, where the kinetic energy production is enhanced by the unstable buoyancy forcing leading to an increased TKE. During the negative phase of ENSO, stably stratified conditions exist, where the kinetic energy production is offset by the stable buoyancy force, reducing the TKE. This is indicative of high (low) turbulent kinetic energy production, low (high) flux Richardson number based stability function ( S H ), and low (high) dominance of buoyancy‐driven mixing during positive (negative) phases of ENSO. The results highlight that the counteracting influence of TKE and S H is a plausible reason for relatively weaker amplitude of IAV of BoB mixing compared to its normal seasonal cycle." @default.
- W2800892725 created "2018-05-17" @default.
- W2800892725 creator A5027530528 @default.
- W2800892725 creator A5058732513 @default.
- W2800892725 creator A5076582233 @default.
- W2800892725 date "2018-06-01" @default.
- W2800892725 modified "2023-09-30" @default.
- W2800892725 title "A Modeling Study of Interannual Variability of Bay of Bengal Mixing and Barrier Layer Formation" @default.
- W2800892725 cites W1553998515 @default.
- W2800892725 cites W1591225748 @default.
- W2800892725 cites W1597635883 @default.
- W2800892725 cites W1701272092 @default.
- W2800892725 cites W1963549306 @default.
- W2800892725 cites W1967722715 @default.
- W2800892725 cites W1972686412 @default.
- W2800892725 cites W1996032721 @default.
- W2800892725 cites W2000058251 @default.
- W2800892725 cites W2000695127 @default.
- W2800892725 cites W2004463485 @default.
- W2800892725 cites W2006165291 @default.
- W2800892725 cites W2017759254 @default.
- W2800892725 cites W2018045139 @default.
- W2800892725 cites W2031445954 @default.
- W2800892725 cites W2033301844 @default.
- W2800892725 cites W2038742869 @default.
- W2800892725 cites W2044555816 @default.
- W2800892725 cites W2045885526 @default.
- W2800892725 cites W2060935889 @default.
- W2800892725 cites W2062191307 @default.
- W2800892725 cites W2065667212 @default.
- W2800892725 cites W2069197937 @default.
- W2800892725 cites W2077201314 @default.
- W2800892725 cites W2082265491 @default.
- W2800892725 cites W2082281341 @default.
- W2800892725 cites W2084461152 @default.
- W2800892725 cites W2086732476 @default.
- W2800892725 cites W2090075242 @default.
- W2800892725 cites W2094568686 @default.
- W2800892725 cites W2099266998 @default.
- W2800892725 cites W2110316417 @default.
- W2800892725 cites W2117119565 @default.
- W2800892725 cites W2122739104 @default.
- W2800892725 cites W2144880463 @default.
- W2800892725 cites W2146299840 @default.
- W2800892725 cites W2146658667 @default.
- W2800892725 cites W2149620894 @default.
- W2800892725 cites W2152696489 @default.
- W2800892725 cites W2152806238 @default.
- W2800892725 cites W2162638727 @default.
- W2800892725 cites W2174943822 @default.
- W2800892725 cites W2176510221 @default.
- W2800892725 cites W2180958814 @default.
- W2800892725 cites W2412135367 @default.
- W2800892725 cites W2467268619 @default.
- W2800892725 cites W2469537507 @default.
- W2800892725 cites W2473313026 @default.
- W2800892725 cites W2512698173 @default.
- W2800892725 cites W2583279465 @default.
- W2800892725 cites W2592712297 @default.
- W2800892725 cites W2610512769 @default.
- W2800892725 cites W2793883848 @default.
- W2800892725 cites W4210778813 @default.
- W2800892725 doi "https://doi.org/10.1029/2017jc013637" @default.
- W2800892725 hasPublicationYear "2018" @default.
- W2800892725 type Work @default.
- W2800892725 sameAs 2800892725 @default.
- W2800892725 citedByCount "12" @default.
- W2800892725 countsByYear W28008927252018 @default.
- W2800892725 countsByYear W28008927252019 @default.
- W2800892725 countsByYear W28008927252020 @default.
- W2800892725 countsByYear W28008927252021 @default.
- W2800892725 countsByYear W28008927252022 @default.
- W2800892725 countsByYear W28008927252023 @default.
- W2800892725 crossrefType "journal-article" @default.
- W2800892725 hasAuthorship W2800892725A5027530528 @default.
- W2800892725 hasAuthorship W2800892725A5058732513 @default.
- W2800892725 hasAuthorship W2800892725A5076582233 @default.
- W2800892725 hasBestOaLocation W28008927251 @default.
- W2800892725 hasConcept C10138342 @default.
- W2800892725 hasConcept C105824904 @default.
- W2800892725 hasConcept C111368507 @default.
- W2800892725 hasConcept C111603439 @default.
- W2800892725 hasConcept C115880899 @default.
- W2800892725 hasConcept C121332964 @default.
- W2800892725 hasConcept C122120755 @default.
- W2800892725 hasConcept C127313418 @default.
- W2800892725 hasConcept C129513315 @default.
- W2800892725 hasConcept C134853933 @default.
- W2800892725 hasConcept C138777275 @default.
- W2800892725 hasConcept C162324750 @default.
- W2800892725 hasConcept C187599188 @default.
- W2800892725 hasConcept C197115733 @default.
- W2800892725 hasConcept C23715911 @default.
- W2800892725 hasConcept C39432304 @default.
- W2800892725 hasConcept C49204034 @default.
- W2800892725 hasConcept C5072599 @default.
- W2800892725 hasConcept C57879066 @default.
- W2800892725 hasConcept C60718061 @default.