Matches in SemOpenAlex for { <https://semopenalex.org/work/W2800929042> ?p ?o ?g. }
Showing items 1 to 90 of
90
with 100 items per page.
- W2800929042 endingPage "6841" @default.
- W2800929042 startingPage "6835" @default.
- W2800929042 abstract "Milk filtration procedures are gaining relevance in the dairy industry because milk ultra- and nanofiltrates are used to increase milk processing efficiency, and as additives for products with improved nutraceutical properties. This study aimed to develop Fourier-transformed mid-infrared spectroscopy calibrations for ultra- and nanopermeate and retentate fractions of defatted and delactosated milk. A total of 154 samples from different milk fractions were collected and analyzed using reference methods to determine protein, solids-not-fat, glucose, and galactose content. The obtained values were matched with their respective Fourier-transformed mid-infrared spectroscopy spectra to develop new prediction models. Calibrations for each trait were built following 3 different approaches to get the best prediction models: (1) using the entire data set, (2) using 3 subsets based on component concentrations (level approach), and (3) using hierarchical clusters calculated with pairwise Mahalanobis distance among spectra (cluster approach). Calibrations were developed using partial least squares regression, after removing low signal-to-noise ratio wavelengths, and validated through a leave-one-out cross-validation procedure. In addition, the accuracy of the predicted values within each fraction was checked for each approach. Dividing the data set into subsets improved prediction models for each trait and for the samples in each milk fraction. Without considering milk fraction, the best improvement was observed for glucose and galactose. Glucose ratio performance deviation in cross-validation (RPD) increased from 7.42 to 11.31 and 11.06, for cluster and level approaches, respectively, whereas galactose RPD increased from 8.86 to 11.69 and 11.27 for cluster and level approaches, respectively. Considering milk fractions, the best improvement was observed for protein content, where RPD ranged from 0.08 to 6.06 for the whole data set calibration, whereas it ranged from 0.43 to 40.34 for the subset calibration approaches. Cluster and level approaches to build calibration models were comparable for samples from different fractions, suggesting that the 2 subsetting protocols should be both investigated to get the best prediction performances." @default.
- W2800929042 created "2018-05-17" @default.
- W2800929042 creator A5007444040 @default.
- W2800929042 creator A5026105865 @default.
- W2800929042 creator A5027487675 @default.
- W2800929042 creator A5035321982 @default.
- W2800929042 creator A5053044603 @default.
- W2800929042 date "2018-08-01" @default.
- W2800929042 modified "2023-09-27" @default.
- W2800929042 title "Development of Fourier-transformed mid-infrared spectroscopy prediction models for major constituents of fractions of delactosated, defatted milk obtained through ultra- and nanofiltration" @default.
- W2800929042 cites W1248536216 @default.
- W2800929042 cites W1577967224 @default.
- W2800929042 cites W1919289741 @default.
- W2800929042 cites W1967964220 @default.
- W2800929042 cites W1983648847 @default.
- W2800929042 cites W1986671633 @default.
- W2800929042 cites W2003167996 @default.
- W2800929042 cites W2038242845 @default.
- W2800929042 cites W2047887458 @default.
- W2800929042 cites W2050297026 @default.
- W2800929042 cites W2062967981 @default.
- W2800929042 cites W2065616117 @default.
- W2800929042 cites W2073858026 @default.
- W2800929042 cites W2076226702 @default.
- W2800929042 cites W2083183616 @default.
- W2800929042 cites W2085485330 @default.
- W2800929042 cites W2085917613 @default.
- W2800929042 cites W2100458127 @default.
- W2800929042 cites W2159539039 @default.
- W2800929042 cites W2170453569 @default.
- W2800929042 cites W2235108757 @default.
- W2800929042 cites W2332005185 @default.
- W2800929042 cites W2508754564 @default.
- W2800929042 cites W2581816029 @default.
- W2800929042 cites W2624814487 @default.
- W2800929042 cites W2769386137 @default.
- W2800929042 cites W2801913668 @default.
- W2800929042 doi "https://doi.org/10.3168/jds.2017-14343" @default.
- W2800929042 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29753470" @default.
- W2800929042 hasPublicationYear "2018" @default.
- W2800929042 type Work @default.
- W2800929042 sameAs 2800929042 @default.
- W2800929042 citedByCount "6" @default.
- W2800929042 countsByYear W28009290422019 @default.
- W2800929042 countsByYear W28009290422021 @default.
- W2800929042 countsByYear W28009290422022 @default.
- W2800929042 countsByYear W28009290422023 @default.
- W2800929042 crossrefType "journal-article" @default.
- W2800929042 hasAuthorship W2800929042A5007444040 @default.
- W2800929042 hasAuthorship W2800929042A5026105865 @default.
- W2800929042 hasAuthorship W2800929042A5027487675 @default.
- W2800929042 hasAuthorship W2800929042A5035321982 @default.
- W2800929042 hasAuthorship W2800929042A5053044603 @default.
- W2800929042 hasBestOaLocation W28009290421 @default.
- W2800929042 hasConcept C105795698 @default.
- W2800929042 hasConcept C113196181 @default.
- W2800929042 hasConcept C185592680 @default.
- W2800929042 hasConcept C22354355 @default.
- W2800929042 hasConcept C27438332 @default.
- W2800929042 hasConcept C33923547 @default.
- W2800929042 hasConcept C43617362 @default.
- W2800929042 hasConceptScore W2800929042C105795698 @default.
- W2800929042 hasConceptScore W2800929042C113196181 @default.
- W2800929042 hasConceptScore W2800929042C185592680 @default.
- W2800929042 hasConceptScore W2800929042C22354355 @default.
- W2800929042 hasConceptScore W2800929042C27438332 @default.
- W2800929042 hasConceptScore W2800929042C33923547 @default.
- W2800929042 hasConceptScore W2800929042C43617362 @default.
- W2800929042 hasIssue "8" @default.
- W2800929042 hasLocation W28009290421 @default.
- W2800929042 hasLocation W28009290422 @default.
- W2800929042 hasOpenAccess W2800929042 @default.
- W2800929042 hasPrimaryLocation W28009290421 @default.
- W2800929042 hasRelatedWork W1964503221 @default.
- W2800929042 hasRelatedWork W1965970252 @default.
- W2800929042 hasRelatedWork W2009149035 @default.
- W2800929042 hasRelatedWork W2060925218 @default.
- W2800929042 hasRelatedWork W2069325908 @default.
- W2800929042 hasRelatedWork W2073480860 @default.
- W2800929042 hasRelatedWork W2076310458 @default.
- W2800929042 hasRelatedWork W2105514151 @default.
- W2800929042 hasRelatedWork W3025597638 @default.
- W2800929042 hasRelatedWork W3123620432 @default.
- W2800929042 hasVolume "101" @default.
- W2800929042 isParatext "false" @default.
- W2800929042 isRetracted "false" @default.
- W2800929042 magId "2800929042" @default.
- W2800929042 workType "article" @default.