Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801051326> ?p ?o ?g. }
Showing items 1 to 67 of
67
with 100 items per page.
- W2801051326 endingPage "809" @default.
- W2801051326 startingPage "803" @default.
- W2801051326 abstract "Although new available big data sources have revealed themselves to be extraordinarily useful for transport demand modelling, they have not come into widespread use due to the justifiable privacy concerns of data stewards. In this study, we step back and re-evaluate the way in which mobile phone telco data can be introduced for the task of transport and land-use policy evaluation, travel demand forecasting and transport infrastructure testing through large-scale transportation simulations. We investigated that question by deploying a multi-agent transport simulation driven primarily by hourly-aggregated telco Origin-Destination (OD) matrices. We address the principal four challenges: spatial and temporal disaggregation, mode imputation and route choice. For temporal disaggregation, we propose a convolution with an exponential kernel method. As for transport mode imputation, a supervised-learning framework is designed. The simulation results are compared against traffic count data and public transport smart card transactions, showing accurate patterns for private cars but overestimated public transport demand in the morning peak. Lastly, we set the future steps for the improvement of simulations driven by aggregated mobile phone data." @default.
- W2801051326 created "2018-05-17" @default.
- W2801051326 creator A5006919137 @default.
- W2801051326 creator A5056867184 @default.
- W2801051326 creator A5058264993 @default.
- W2801051326 date "2018-01-01" @default.
- W2801051326 modified "2023-09-26" @default.
- W2801051326 title "Multi-agent urban transport simulations using OD matrices from mobile phone data" @default.
- W2801051326 cites W2115240023 @default.
- W2801051326 cites W2272113230 @default.
- W2801051326 cites W2475569566 @default.
- W2801051326 cites W2513226432 @default.
- W2801051326 doi "https://doi.org/10.1016/j.procs.2018.04.139" @default.
- W2801051326 hasPublicationYear "2018" @default.
- W2801051326 type Work @default.
- W2801051326 sameAs 2801051326 @default.
- W2801051326 citedByCount "7" @default.
- W2801051326 countsByYear W28010513262020 @default.
- W2801051326 countsByYear W28010513262021 @default.
- W2801051326 crossrefType "journal-article" @default.
- W2801051326 hasAuthorship W2801051326A5006919137 @default.
- W2801051326 hasAuthorship W2801051326A5056867184 @default.
- W2801051326 hasAuthorship W2801051326A5058264993 @default.
- W2801051326 hasBestOaLocation W28010513261 @default.
- W2801051326 hasConcept C124101348 @default.
- W2801051326 hasConcept C127413603 @default.
- W2801051326 hasConcept C138885662 @default.
- W2801051326 hasConcept C22212356 @default.
- W2801051326 hasConcept C2777421447 @default.
- W2801051326 hasConcept C2778707766 @default.
- W2801051326 hasConcept C41008148 @default.
- W2801051326 hasConcept C41895202 @default.
- W2801051326 hasConcept C539828613 @default.
- W2801051326 hasConcept C75684735 @default.
- W2801051326 hasConcept C76155785 @default.
- W2801051326 hasConceptScore W2801051326C124101348 @default.
- W2801051326 hasConceptScore W2801051326C127413603 @default.
- W2801051326 hasConceptScore W2801051326C138885662 @default.
- W2801051326 hasConceptScore W2801051326C22212356 @default.
- W2801051326 hasConceptScore W2801051326C2777421447 @default.
- W2801051326 hasConceptScore W2801051326C2778707766 @default.
- W2801051326 hasConceptScore W2801051326C41008148 @default.
- W2801051326 hasConceptScore W2801051326C41895202 @default.
- W2801051326 hasConceptScore W2801051326C539828613 @default.
- W2801051326 hasConceptScore W2801051326C75684735 @default.
- W2801051326 hasConceptScore W2801051326C76155785 @default.
- W2801051326 hasLocation W28010513261 @default.
- W2801051326 hasLocation W28010513262 @default.
- W2801051326 hasOpenAccess W2801051326 @default.
- W2801051326 hasPrimaryLocation W28010513261 @default.
- W2801051326 hasRelatedWork W2130579308 @default.
- W2801051326 hasRelatedWork W2348097614 @default.
- W2801051326 hasRelatedWork W2368437561 @default.
- W2801051326 hasRelatedWork W2464683890 @default.
- W2801051326 hasRelatedWork W2901726430 @default.
- W2801051326 hasRelatedWork W294712548 @default.
- W2801051326 hasRelatedWork W2978687348 @default.
- W2801051326 hasRelatedWork W4313227063 @default.
- W2801051326 hasRelatedWork W786186891 @default.
- W2801051326 hasRelatedWork W2137338429 @default.
- W2801051326 hasVolume "130" @default.
- W2801051326 isParatext "false" @default.
- W2801051326 isRetracted "false" @default.
- W2801051326 magId "2801051326" @default.
- W2801051326 workType "article" @default.