Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801060237> ?p ?o ?g. }
- W2801060237 endingPage "e10029" @default.
- W2801060237 startingPage "e10029" @default.
- W2801060237 abstract "On December 6 and 7, 2017, the US Department of Health and Human Services (HHS) hosted its first Code-a-Thon event aimed at leveraging technology and data-driven solutions to help combat the opioid epidemic. The authors—an interdisciplinary team from academia, the private sector, and the US Centers for Disease Control and Prevention—participated in the Code-a-Thon as part of the prevention track.The aim of this study was to develop and deploy a methodology using machine learning to accurately detect the marketing and sale of opioids by illicit online sellers via Twitter as part of participation at the HHS Opioid Code-a-Thon event.Tweets were collected from the Twitter public application programming interface stream filtered for common prescription opioid keywords in conjunction with participation in the Code-a-Thon from November 15, 2017 to December 5, 2017. An unsupervised machine learning–based approach was developed and used during the Code-a-Thon competition (24 hours) to obtain a summary of the content of the tweets to isolate those clusters associated with illegal online marketing and sale using a biterm topic model (BTM). After isolating relevant tweets, hyperlinks associated with these tweets were reviewed to assess the characteristics of illegal online sellers.We collected and analyzed 213,041 tweets over the course of the Code-a-Thon containing keywords codeine, percocet, vicodin, oxycontin, oxycodone, fentanyl, and hydrocodone. Using BTM, 0.32% (692/213,041) tweets were identified as being associated with illegal online marketing and sale of prescription opioids. After removing duplicates and dead links, we identified 34 unique “live” tweets, with 44% (15/34) directing consumers to illicit online pharmacies, 32% (11/34) linked to individual drug sellers, and 21% (7/34) used by marketing affiliates. In addition to offering the “no prescription” sale of opioids, many of these vendors also sold other controlled substances and illicit drugs.The results of this study are in line with prior studies that have identified social media platforms, including Twitter, as a potential conduit for supply and sale of illicit opioids. To translate these results into action, authors also developed a prototype wireframe for the purposes of detecting, classifying, and reporting illicit online pharmacy tweets selling controlled substances illegally to the US Food and Drug Administration and the US Drug Enforcement Agency. Further development of solutions based on these methods has the potential to proactively alert regulators and law enforcement agencies of illegal opioid sales, while also making the online environment safer for the public." @default.
- W2801060237 created "2018-05-17" @default.
- W2801060237 creator A5024594215 @default.
- W2801060237 creator A5036396809 @default.
- W2801060237 creator A5038657275 @default.
- W2801060237 creator A5041988086 @default.
- W2801060237 creator A5046725740 @default.
- W2801060237 date "2018-04-27" @default.
- W2801060237 modified "2023-10-03" @default.
- W2801060237 title "Solution to Detect, Classify, and Report Illicit Online Marketing and Sales of Controlled Substances via Twitter: Using Machine Learning and Web Forensics to Combat Digital Opioid Access" @default.
- W2801060237 cites W1493038098 @default.
- W2801060237 cites W1971304768 @default.
- W2801060237 cites W1981087627 @default.
- W2801060237 cites W1982097375 @default.
- W2801060237 cites W1985045482 @default.
- W2801060237 cites W2041400110 @default.
- W2801060237 cites W2066933265 @default.
- W2801060237 cites W2083352036 @default.
- W2801060237 cites W2083618452 @default.
- W2801060237 cites W2105585943 @default.
- W2801060237 cites W2106476394 @default.
- W2801060237 cites W2129702127 @default.
- W2801060237 cites W2130726214 @default.
- W2801060237 cites W2132829374 @default.
- W2801060237 cites W2154288073 @default.
- W2801060237 cites W2161258102 @default.
- W2801060237 cites W2163059164 @default.
- W2801060237 cites W2209302491 @default.
- W2801060237 cites W2220992269 @default.
- W2801060237 cites W2259285097 @default.
- W2801060237 cites W2289450079 @default.
- W2801060237 cites W2329316201 @default.
- W2801060237 cites W2345553623 @default.
- W2801060237 cites W2460096222 @default.
- W2801060237 cites W2508870278 @default.
- W2801060237 cites W2514038762 @default.
- W2801060237 cites W2519105412 @default.
- W2801060237 cites W2561135550 @default.
- W2801060237 cites W2563873792 @default.
- W2801060237 cites W2587886959 @default.
- W2801060237 cites W2602679156 @default.
- W2801060237 cites W2617279801 @default.
- W2801060237 cites W2623575249 @default.
- W2801060237 cites W2735582735 @default.
- W2801060237 cites W2754444075 @default.
- W2801060237 cites W2756102459 @default.
- W2801060237 cites W2765494774 @default.
- W2801060237 cites W2766959695 @default.
- W2801060237 cites W2770435718 @default.
- W2801060237 cites W2771710847 @default.
- W2801060237 cites W2772026118 @default.
- W2801060237 cites W2774022973 @default.
- W2801060237 cites W2779695185 @default.
- W2801060237 cites W2784112886 @default.
- W2801060237 cites W3121881696 @default.
- W2801060237 cites W4251598061 @default.
- W2801060237 cites W844073807 @default.
- W2801060237 doi "https://doi.org/10.2196/10029" @default.
- W2801060237 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/5948414" @default.
- W2801060237 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29613851" @default.
- W2801060237 hasPublicationYear "2018" @default.
- W2801060237 type Work @default.
- W2801060237 sameAs 2801060237 @default.
- W2801060237 citedByCount "62" @default.
- W2801060237 countsByYear W28010602372018 @default.
- W2801060237 countsByYear W28010602372019 @default.
- W2801060237 countsByYear W28010602372020 @default.
- W2801060237 countsByYear W28010602372021 @default.
- W2801060237 countsByYear W28010602372022 @default.
- W2801060237 countsByYear W28010602372023 @default.
- W2801060237 crossrefType "journal-article" @default.
- W2801060237 hasAuthorship W2801060237A5024594215 @default.
- W2801060237 hasAuthorship W2801060237A5036396809 @default.
- W2801060237 hasAuthorship W2801060237A5038657275 @default.
- W2801060237 hasAuthorship W2801060237A5041988086 @default.
- W2801060237 hasAuthorship W2801060237A5046725740 @default.
- W2801060237 hasBestOaLocation W28010602371 @default.
- W2801060237 hasConcept C108827166 @default.
- W2801060237 hasConcept C110875604 @default.
- W2801060237 hasConcept C112698675 @default.
- W2801060237 hasConcept C126322002 @default.
- W2801060237 hasConcept C136764020 @default.
- W2801060237 hasConcept C144133560 @default.
- W2801060237 hasConcept C170493617 @default.
- W2801060237 hasConcept C2776029756 @default.
- W2801060237 hasConcept C2779418921 @default.
- W2801060237 hasConcept C2781063702 @default.
- W2801060237 hasConcept C2911204551 @default.
- W2801060237 hasConcept C38652104 @default.
- W2801060237 hasConcept C41008148 @default.
- W2801060237 hasConcept C518677369 @default.
- W2801060237 hasConcept C71924100 @default.
- W2801060237 hasConceptScore W2801060237C108827166 @default.
- W2801060237 hasConceptScore W2801060237C110875604 @default.
- W2801060237 hasConceptScore W2801060237C112698675 @default.
- W2801060237 hasConceptScore W2801060237C126322002 @default.
- W2801060237 hasConceptScore W2801060237C136764020 @default.
- W2801060237 hasConceptScore W2801060237C144133560 @default.