Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801116238> ?p ?o ?g. }
Showing items 1 to 82 of
82
with 100 items per page.
- W2801116238 endingPage "46" @default.
- W2801116238 startingPage "37" @default.
- W2801116238 abstract "DeepKumar, Krishan learningSinha, Shambhavi empoweredManupriya, Piyushi the license plate recognition (LPR) system which can efficiently extract the information from a vehicle’s license plate. LPR has various applications in this digital world. Due to technology growing at a rocketing pace, there is a rapid growth in the number of vehicles on road. Even self-driving cars are soon to be a common sight. This is causing a fast and frequent growth in the accidents occurrence and other mishaps. Thus, there is a need for monitoring traffic and security surveillance. LPR technique is not new. However, traditionally the extracting features from an image/ license plate were done hand-tunned which make the recognition process time-consuming and error-prone. In this paper, we proposed a novel machine learning approach to recognizing the license plate number. We used one of the most successful deep learning method, convolutional neural network (CNN) for extracting the visual features automatically. Suitable localization and segmentation techniques are employed before CNN model to enhance the accuracy of the proposed model. In addition to this, the D-PNR model also takes care of proper identification from images those are hazy and is not suitable-inclined or noisy images. Qualitative and quantitative evaluation is done in order to compare the performances of the proposed D-PNR model and state-of-the-art models. A computing analysis of our approach also shows that it meets the requirement of the real-time applications, i.e., monitoring traffic and security surveillance" @default.
- W2801116238 created "2018-05-17" @default.
- W2801116238 creator A5015809185 @default.
- W2801116238 creator A5073621919 @default.
- W2801116238 creator A5073901413 @default.
- W2801116238 date "2018-01-01" @default.
- W2801116238 modified "2023-10-18" @default.
- W2801116238 title "D-PNR: Deep License Plate Number Recognition" @default.
- W2801116238 cites W1965326603 @default.
- W2801116238 cites W2019019933 @default.
- W2801116238 cites W2019876754 @default.
- W2801116238 cites W2041004286 @default.
- W2801116238 cites W2095565388 @default.
- W2801116238 cites W2097074808 @default.
- W2801116238 cites W2106073265 @default.
- W2801116238 cites W2120820227 @default.
- W2801116238 cites W2134726061 @default.
- W2801116238 cites W2135449683 @default.
- W2801116238 cites W2145621224 @default.
- W2801116238 cites W2543461915 @default.
- W2801116238 doi "https://doi.org/10.1007/978-981-10-7898-9_4" @default.
- W2801116238 hasPublicationYear "2018" @default.
- W2801116238 type Work @default.
- W2801116238 sameAs 2801116238 @default.
- W2801116238 citedByCount "12" @default.
- W2801116238 countsByYear W28011162382018 @default.
- W2801116238 countsByYear W28011162382019 @default.
- W2801116238 countsByYear W28011162382020 @default.
- W2801116238 countsByYear W28011162382021 @default.
- W2801116238 countsByYear W28011162382022 @default.
- W2801116238 countsByYear W28011162382023 @default.
- W2801116238 crossrefType "book-chapter" @default.
- W2801116238 hasAuthorship W2801116238A5015809185 @default.
- W2801116238 hasAuthorship W2801116238A5073621919 @default.
- W2801116238 hasAuthorship W2801116238A5073901413 @default.
- W2801116238 hasConcept C108583219 @default.
- W2801116238 hasConcept C111919701 @default.
- W2801116238 hasConcept C116834253 @default.
- W2801116238 hasConcept C119857082 @default.
- W2801116238 hasConcept C153180895 @default.
- W2801116238 hasConcept C154945302 @default.
- W2801116238 hasConcept C2780560020 @default.
- W2801116238 hasConcept C31972630 @default.
- W2801116238 hasConcept C41008148 @default.
- W2801116238 hasConcept C59822182 @default.
- W2801116238 hasConcept C81363708 @default.
- W2801116238 hasConcept C86803240 @default.
- W2801116238 hasConcept C89600930 @default.
- W2801116238 hasConcept C98045186 @default.
- W2801116238 hasConceptScore W2801116238C108583219 @default.
- W2801116238 hasConceptScore W2801116238C111919701 @default.
- W2801116238 hasConceptScore W2801116238C116834253 @default.
- W2801116238 hasConceptScore W2801116238C119857082 @default.
- W2801116238 hasConceptScore W2801116238C153180895 @default.
- W2801116238 hasConceptScore W2801116238C154945302 @default.
- W2801116238 hasConceptScore W2801116238C2780560020 @default.
- W2801116238 hasConceptScore W2801116238C31972630 @default.
- W2801116238 hasConceptScore W2801116238C41008148 @default.
- W2801116238 hasConceptScore W2801116238C59822182 @default.
- W2801116238 hasConceptScore W2801116238C81363708 @default.
- W2801116238 hasConceptScore W2801116238C86803240 @default.
- W2801116238 hasConceptScore W2801116238C89600930 @default.
- W2801116238 hasConceptScore W2801116238C98045186 @default.
- W2801116238 hasLocation W28011162381 @default.
- W2801116238 hasOpenAccess W2801116238 @default.
- W2801116238 hasPrimaryLocation W28011162381 @default.
- W2801116238 hasRelatedWork W2036021480 @default.
- W2801116238 hasRelatedWork W2606446052 @default.
- W2801116238 hasRelatedWork W3029198973 @default.
- W2801116238 hasRelatedWork W3133861977 @default.
- W2801116238 hasRelatedWork W3167935049 @default.
- W2801116238 hasRelatedWork W3193565141 @default.
- W2801116238 hasRelatedWork W3195777957 @default.
- W2801116238 hasRelatedWork W4226493464 @default.
- W2801116238 hasRelatedWork W4312417841 @default.
- W2801116238 hasRelatedWork W4315434538 @default.
- W2801116238 isParatext "false" @default.
- W2801116238 isRetracted "false" @default.
- W2801116238 magId "2801116238" @default.
- W2801116238 workType "book-chapter" @default.