Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801132216> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W2801132216 endingPage "e10493" @default.
- W2801132216 startingPage "e10493" @default.
- W2801132216 abstract "Dementia is increasing in prevalence worldwide, yet frequently remains undiagnosed, especially in low- and middle-income countries. Population-based surveys represent an underinvestigated source to identify individuals at risk of dementia.The aim is to identify participants with high likelihood of dementia in population-based surveys without the need of the clinical diagnosis of dementia in a subsample.Unsupervised machine learning classification (hierarchical clustering on principal components) was developed in the Health and Retirement Study (HRS; 2002-2003, N=18,165 individuals) and validated in the Survey of Health, Ageing and Retirement in Europe (SHARE; 2010-2012, N=58,202 individuals).Unsupervised machine learning classification identified three clusters in HRS: cluster 1 (n=12,231) without any functional or motor limitations, cluster 2 (N=4841) with walking/climbing limitations, and cluster 3 (N=1093) with both functional and walking/climbing limitations. Comparison of cluster 3 with previously published predicted probabilities of dementia in HRS showed that it identified high likelihood of dementia (probability of dementia >0.95; area under the curve [AUC]=0.91). Removing either cognitive or both cognitive and behavioral measures did not impede accurate classification (AUC=0.91 and AUC=0.90, respectively). Three clusters with similar profiles were identified in SHARE (cluster 1: n=40,223; cluster 2: n=15,644; cluster 3: n=2335). Survival rate of participants from cluster 3 reached 39.2% (n=665 deceased) in HRS and 62.2% (n=811 deceased) in SHARE after a 3.9-year follow-up. Surviving participants from cluster 3 in both cohorts worsened their functional and mobility performance over the same period.Unsupervised machine learning identifies high likelihood of dementia in population-based surveys, even without cognitive and behavioral measures and without the need of clinical diagnosis of dementia in a subsample of the population. This method could be used to tackle the global challenge of dementia." @default.
- W2801132216 created "2018-05-17" @default.
- W2801132216 creator A5006802898 @default.
- W2801132216 creator A5038974466 @default.
- W2801132216 creator A5091169355 @default.
- W2801132216 date "2018-07-09" @default.
- W2801132216 modified "2023-10-02" @default.
- W2801132216 title "Unsupervised Machine Learning to Identify High Likelihood of Dementia in Population-Based Surveys: Development and Validation Study" @default.
- W2801132216 cites W1526675805 @default.
- W2801132216 cites W1971984754 @default.
- W2801132216 cites W1975680978 @default.
- W2801132216 cites W1987160878 @default.
- W2801132216 cites W2032698104 @default.
- W2801132216 cites W2058269934 @default.
- W2801132216 cites W2059298223 @default.
- W2801132216 cites W2066161981 @default.
- W2801132216 cites W2102646671 @default.
- W2801132216 cites W2122196056 @default.
- W2801132216 cites W2122522567 @default.
- W2801132216 cites W2124342599 @default.
- W2801132216 cites W2132232005 @default.
- W2801132216 cites W2153947402 @default.
- W2801132216 cites W2186824412 @default.
- W2801132216 cites W2329290504 @default.
- W2801132216 cites W2525984666 @default.
- W2801132216 cites W2607775501 @default.
- W2801132216 cites W2697671268 @default.
- W2801132216 cites W2727650337 @default.
- W2801132216 cites W2729156329 @default.
- W2801132216 cites W2738975713 @default.
- W2801132216 cites W4294141750 @default.
- W2801132216 doi "https://doi.org/10.2196/10493" @default.
- W2801132216 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6056741" @default.
- W2801132216 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29986849" @default.
- W2801132216 hasPublicationYear "2018" @default.
- W2801132216 type Work @default.
- W2801132216 sameAs 2801132216 @default.
- W2801132216 citedByCount "47" @default.
- W2801132216 countsByYear W28011322162019 @default.
- W2801132216 countsByYear W28011322162020 @default.
- W2801132216 countsByYear W28011322162021 @default.
- W2801132216 countsByYear W28011322162022 @default.
- W2801132216 countsByYear W28011322162023 @default.
- W2801132216 crossrefType "journal-article" @default.
- W2801132216 hasAuthorship W2801132216A5006802898 @default.
- W2801132216 hasAuthorship W2801132216A5038974466 @default.
- W2801132216 hasAuthorship W2801132216A5091169355 @default.
- W2801132216 hasBestOaLocation W28011322161 @default.
- W2801132216 hasConcept C126322002 @default.
- W2801132216 hasConcept C154945302 @default.
- W2801132216 hasConcept C15744967 @default.
- W2801132216 hasConcept C164866538 @default.
- W2801132216 hasConcept C199360897 @default.
- W2801132216 hasConcept C2779134260 @default.
- W2801132216 hasConcept C2779483572 @default.
- W2801132216 hasConcept C2908647359 @default.
- W2801132216 hasConcept C41008148 @default.
- W2801132216 hasConcept C71924100 @default.
- W2801132216 hasConcept C73555534 @default.
- W2801132216 hasConcept C74909509 @default.
- W2801132216 hasConcept C99454951 @default.
- W2801132216 hasConceptScore W2801132216C126322002 @default.
- W2801132216 hasConceptScore W2801132216C154945302 @default.
- W2801132216 hasConceptScore W2801132216C15744967 @default.
- W2801132216 hasConceptScore W2801132216C164866538 @default.
- W2801132216 hasConceptScore W2801132216C199360897 @default.
- W2801132216 hasConceptScore W2801132216C2779134260 @default.
- W2801132216 hasConceptScore W2801132216C2779483572 @default.
- W2801132216 hasConceptScore W2801132216C2908647359 @default.
- W2801132216 hasConceptScore W2801132216C41008148 @default.
- W2801132216 hasConceptScore W2801132216C71924100 @default.
- W2801132216 hasConceptScore W2801132216C73555534 @default.
- W2801132216 hasConceptScore W2801132216C74909509 @default.
- W2801132216 hasConceptScore W2801132216C99454951 @default.
- W2801132216 hasIssue "7" @default.
- W2801132216 hasLocation W28011322161 @default.
- W2801132216 hasLocation W28011322162 @default.
- W2801132216 hasLocation W28011322163 @default.
- W2801132216 hasLocation W28011322164 @default.
- W2801132216 hasLocation W28011322165 @default.
- W2801132216 hasOpenAccess W2801132216 @default.
- W2801132216 hasPrimaryLocation W28011322161 @default.
- W2801132216 hasRelatedWork W1985055694 @default.
- W2801132216 hasRelatedWork W2012590874 @default.
- W2801132216 hasRelatedWork W2026761251 @default.
- W2801132216 hasRelatedWork W2144807988 @default.
- W2801132216 hasRelatedWork W2181485394 @default.
- W2801132216 hasRelatedWork W2748952813 @default.
- W2801132216 hasRelatedWork W2899084033 @default.
- W2801132216 hasRelatedWork W2947735987 @default.
- W2801132216 hasRelatedWork W4205527881 @default.
- W2801132216 hasRelatedWork W4236993829 @default.
- W2801132216 hasVolume "20" @default.
- W2801132216 isParatext "false" @default.
- W2801132216 isRetracted "false" @default.
- W2801132216 magId "2801132216" @default.
- W2801132216 workType "article" @default.