Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801150448> ?p ?o ?g. }
- W2801150448 endingPage "1" @default.
- W2801150448 startingPage "1" @default.
- W2801150448 abstract "Locality preserving projections (LPP) has been widely studied and extended in recent years, because of its promising performance in feature extraction. In this paper, we propose a modified version of the LPP by constructing a novel regression model. To improve the performance of the model, we impose a low-rank constraint on the regression matrix to discover the latent relations between different neighbors. By using the L <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2,1</sub> -norm as a metric for the loss function, we can further minimize the reconstruction error and derive a robust model. Furthermore, the L <sub xmlns:mml=http://www.w3.org/1998/Math/MathML xmlns:xlink=http://www.w3.org/1999/xlink>2,1</sub> -norm regularization term is added to obtain a jointly sparse regression matrix for feature selection. An iterative algorithm with guaranteed convergence is designed to solve the optimization problem. To validate the recognition efficiency, we apply the algorithm to a series of benchmark datasets containing face and character images for feature extraction. The experimental results show that the proposed method is better than some existing methods. The code of this paper can be downloaded from http://www.scholat.com/laizhihui." @default.
- W2801150448 created "2018-05-17" @default.
- W2801150448 creator A5019313200 @default.
- W2801150448 creator A5056686459 @default.
- W2801150448 creator A5058605656 @default.
- W2801150448 creator A5060774236 @default.
- W2801150448 creator A5082756048 @default.
- W2801150448 date "2018-01-01" @default.
- W2801150448 modified "2023-10-15" @default.
- W2801150448 title "Low-Rank Linear Embedding for Image Recognition" @default.
- W2801150448 cites W1566135517 @default.
- W2801150448 cites W1975900269 @default.
- W2801150448 cites W1989267105 @default.
- W2801150448 cites W1989641281 @default.
- W2801150448 cites W1991694635 @default.
- W2801150448 cites W1996232089 @default.
- W2801150448 cites W2011972965 @default.
- W2801150448 cites W2021770241 @default.
- W2801150448 cites W2024194293 @default.
- W2801150448 cites W2042244269 @default.
- W2801150448 cites W2043661478 @default.
- W2801150448 cites W2053090063 @default.
- W2801150448 cites W2053186076 @default.
- W2801150448 cites W2063715296 @default.
- W2801150448 cites W2072026719 @default.
- W2801150448 cites W2072188503 @default.
- W2801150448 cites W2076363162 @default.
- W2801150448 cites W2076766946 @default.
- W2801150448 cites W2089035607 @default.
- W2801150448 cites W2089468765 @default.
- W2801150448 cites W2090341258 @default.
- W2801150448 cites W2100495423 @default.
- W2801150448 cites W2102544846 @default.
- W2801150448 cites W2104294146 @default.
- W2801150448 cites W2120552947 @default.
- W2801150448 cites W2136540140 @default.
- W2801150448 cites W2149737612 @default.
- W2801150448 cites W2151663479 @default.
- W2801150448 cites W2152758153 @default.
- W2801150448 cites W2297991835 @default.
- W2801150448 cites W2313529869 @default.
- W2801150448 cites W2441742266 @default.
- W2801150448 cites W2464913182 @default.
- W2801150448 cites W2507470109 @default.
- W2801150448 cites W2573268259 @default.
- W2801150448 cites W2576821058 @default.
- W2801150448 cites W2613237644 @default.
- W2801150448 cites W2618530766 @default.
- W2801150448 cites W2735797020 @default.
- W2801150448 cites W2739902099 @default.
- W2801150448 cites W2791471386 @default.
- W2801150448 cites W4245134515 @default.
- W2801150448 doi "https://doi.org/10.1109/tmm.2018.2834867" @default.
- W2801150448 hasPublicationYear "2018" @default.
- W2801150448 type Work @default.
- W2801150448 sameAs 2801150448 @default.
- W2801150448 citedByCount "20" @default.
- W2801150448 countsByYear W28011504482018 @default.
- W2801150448 countsByYear W28011504482019 @default.
- W2801150448 countsByYear W28011504482020 @default.
- W2801150448 countsByYear W28011504482021 @default.
- W2801150448 countsByYear W28011504482022 @default.
- W2801150448 countsByYear W28011504482023 @default.
- W2801150448 crossrefType "journal-article" @default.
- W2801150448 hasAuthorship W2801150448A5019313200 @default.
- W2801150448 hasAuthorship W2801150448A5056686459 @default.
- W2801150448 hasAuthorship W2801150448A5058605656 @default.
- W2801150448 hasAuthorship W2801150448A5060774236 @default.
- W2801150448 hasAuthorship W2801150448A5082756048 @default.
- W2801150448 hasConcept C121332964 @default.
- W2801150448 hasConcept C153180895 @default.
- W2801150448 hasConcept C154945302 @default.
- W2801150448 hasConcept C158693339 @default.
- W2801150448 hasConcept C2776135515 @default.
- W2801150448 hasConcept C41008148 @default.
- W2801150448 hasConcept C41608201 @default.
- W2801150448 hasConcept C52622490 @default.
- W2801150448 hasConcept C62520636 @default.
- W2801150448 hasConcept C92207270 @default.
- W2801150448 hasConceptScore W2801150448C121332964 @default.
- W2801150448 hasConceptScore W2801150448C153180895 @default.
- W2801150448 hasConceptScore W2801150448C154945302 @default.
- W2801150448 hasConceptScore W2801150448C158693339 @default.
- W2801150448 hasConceptScore W2801150448C2776135515 @default.
- W2801150448 hasConceptScore W2801150448C41008148 @default.
- W2801150448 hasConceptScore W2801150448C41608201 @default.
- W2801150448 hasConceptScore W2801150448C52622490 @default.
- W2801150448 hasConceptScore W2801150448C62520636 @default.
- W2801150448 hasConceptScore W2801150448C92207270 @default.
- W2801150448 hasFunder F4320321001 @default.
- W2801150448 hasFunder F4320321921 @default.
- W2801150448 hasFunder F4320322598 @default.
- W2801150448 hasLocation W28011504481 @default.
- W2801150448 hasOpenAccess W2801150448 @default.
- W2801150448 hasPrimaryLocation W28011504481 @default.
- W2801150448 hasRelatedWork W1964120219 @default.
- W2801150448 hasRelatedWork W2000165426 @default.
- W2801150448 hasRelatedWork W2114557664 @default.