Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801163038> ?p ?o ?g. }
- W2801163038 endingPage "400" @default.
- W2801163038 startingPage "376" @default.
- W2801163038 abstract "We present a numerical methodology based on the use of the Newton and level set methods and tailored for the simulation of incompressible immiscible two-fluid flows with moving hyperelastic membrane. The method features the use of implicit time integration schemes and is based on a consistent Newton–Raphson linearization. The performances are enhanced by using the Kou’s method (Kou et al., 2006) which features a third-order convergence behavior without requiring higher order derivatives. To overcome numerical instability issues related to the explicit decoupling, a fully monolithic strategy and a partitioned implicit strategy are devised. We investigate the main features of the proposed strategies, and we report several numerical experiments with the aim of illustrating their robustness and accuracy. We show numerically that the monolithic strategy performs better and remains stable when considering relatively small viscosities or large stiffness, for which the partitioned approach depicts a slow convergence or even fails to converge. However, the partitioned strategy features significant computational savings when it converges within a reasonable number of sub-iterations." @default.
- W2801163038 created "2018-05-17" @default.
- W2801163038 creator A5074896196 @default.
- W2801163038 date "2018-09-01" @default.
- W2801163038 modified "2023-09-29" @default.
- W2801163038 title "Implicit finite element methodology for the numerical modeling of incompressible two-fluid flows with moving hyperelastic interface" @default.
- W2801163038 cites W1738812763 @default.
- W2801163038 cites W1908831751 @default.
- W2801163038 cites W1970092235 @default.
- W2801163038 cites W1974474907 @default.
- W2801163038 cites W1975961578 @default.
- W2801163038 cites W1979053751 @default.
- W2801163038 cites W1984426476 @default.
- W2801163038 cites W1986824799 @default.
- W2801163038 cites W1989103689 @default.
- W2801163038 cites W2004224985 @default.
- W2801163038 cites W2008368201 @default.
- W2801163038 cites W2012096132 @default.
- W2801163038 cites W2013839680 @default.
- W2801163038 cites W2015667517 @default.
- W2801163038 cites W2026352675 @default.
- W2801163038 cites W2034563280 @default.
- W2801163038 cites W2042813258 @default.
- W2801163038 cites W2054124006 @default.
- W2801163038 cites W2054711601 @default.
- W2801163038 cites W2057588990 @default.
- W2801163038 cites W2058398001 @default.
- W2801163038 cites W2067955258 @default.
- W2801163038 cites W2070336194 @default.
- W2801163038 cites W2070762166 @default.
- W2801163038 cites W2077622536 @default.
- W2801163038 cites W2078282642 @default.
- W2801163038 cites W2087535883 @default.
- W2801163038 cites W2091458120 @default.
- W2801163038 cites W2092284897 @default.
- W2801163038 cites W2096295381 @default.
- W2801163038 cites W2098285739 @default.
- W2801163038 cites W2099516065 @default.
- W2801163038 cites W2101255810 @default.
- W2801163038 cites W2104152474 @default.
- W2801163038 cites W2115401452 @default.
- W2801163038 cites W2117279761 @default.
- W2801163038 cites W2117496726 @default.
- W2801163038 cites W2120051955 @default.
- W2801163038 cites W2120343074 @default.
- W2801163038 cites W2125499132 @default.
- W2801163038 cites W2127000618 @default.
- W2801163038 cites W2128102188 @default.
- W2801163038 cites W2133708099 @default.
- W2801163038 cites W2137058053 @default.
- W2801163038 cites W2143063846 @default.
- W2801163038 cites W2155113608 @default.
- W2801163038 cites W2163385303 @default.
- W2801163038 cites W2240429210 @default.
- W2801163038 cites W2337287213 @default.
- W2801163038 cites W2471500025 @default.
- W2801163038 cites W2560447704 @default.
- W2801163038 cites W2574979322 @default.
- W2801163038 cites W2605524522 @default.
- W2801163038 cites W3105922237 @default.
- W2801163038 cites W777559925 @default.
- W2801163038 doi "https://doi.org/10.1016/j.amc.2018.03.074" @default.
- W2801163038 hasPublicationYear "2018" @default.
- W2801163038 type Work @default.
- W2801163038 sameAs 2801163038 @default.
- W2801163038 citedByCount "2" @default.
- W2801163038 countsByYear W28011630382023 @default.
- W2801163038 crossrefType "journal-article" @default.
- W2801163038 hasAuthorship W2801163038A5074896196 @default.
- W2801163038 hasBestOaLocation W28011630381 @default.
- W2801163038 hasConcept C104317684 @default.
- W2801163038 hasConcept C11210021 @default.
- W2801163038 hasConcept C121332964 @default.
- W2801163038 hasConcept C126255220 @default.
- W2801163038 hasConcept C127413603 @default.
- W2801163038 hasConcept C133731056 @default.
- W2801163038 hasConcept C134306372 @default.
- W2801163038 hasConcept C135628077 @default.
- W2801163038 hasConcept C147370603 @default.
- W2801163038 hasConcept C158622935 @default.
- W2801163038 hasConcept C162324750 @default.
- W2801163038 hasConcept C1633027 @default.
- W2801163038 hasConcept C185592680 @default.
- W2801163038 hasConcept C205606062 @default.
- W2801163038 hasConcept C2777303404 @default.
- W2801163038 hasConcept C2779372316 @default.
- W2801163038 hasConcept C28826006 @default.
- W2801163038 hasConcept C33923547 @default.
- W2801163038 hasConcept C41008148 @default.
- W2801163038 hasConcept C48753275 @default.
- W2801163038 hasConcept C50522688 @default.
- W2801163038 hasConcept C55493867 @default.
- W2801163038 hasConcept C57879066 @default.
- W2801163038 hasConcept C62520636 @default.
- W2801163038 hasConcept C63479239 @default.
- W2801163038 hasConcept C69901531 @default.
- W2801163038 hasConcept C73000952 @default.
- W2801163038 hasConcept C84655787 @default.