Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801244872> ?p ?o ?g. }
- W2801244872 endingPage "1249" @default.
- W2801244872 startingPage "1233" @default.
- W2801244872 abstract "Abstract. Water-vapor-weighted mean temperature, Tm, is the key variable for estimating the mapping factor between GPS zenith wet delay (ZWD) and precipitable water vapor (PWV). For the near-real-time GPS–PWV retrieval, estimating Tm from surface air temperature Ts is a widely used method because of its high temporal resolution and fair degree of accuracy. Based on the estimations of Tm and Ts at each reanalysis grid node of the ERA-Interim data, we analyzed the relationship between Tm and Ts without data smoothing. The analyses demonstrate that the Ts–Tm relationship has significant spatial and temporal variations. Static and time-varying global gridded Ts–Tm models were established and evaluated by comparisons with the radiosonde data at 723 radiosonde stations in the Integrated Global Radiosonde Archive (IGRA). Results show that our global gridded Ts–Tm equations have prominent advantages over the other globally applied models. At over 17 % of the stations, errors larger than 5 K exist in the Bevis equation (Bevis et al., 1992) and in the latitude-related linear model (Y. B. Yao et al., 2014), while these large errors are removed in our time-varying Ts–Tm models. Multiple statistical tests at the 5 % significance level show that the time-varying global gridded model is superior to the other models at 60.03 % of the radiosonde sites. The second-best model is the 1∘ × 1∘ GPT2w model, which is superior at only 12.86 % of the sites. More accurate Tm can reduce the contribution of the uncertainty associated with Tm to the total uncertainty in GPS–PWV, and the reduction augments with the growth of GPS–PWV. Our theoretical analyses with high PWV and small uncertainty in surface pressure indicate that the uncertainty associated with Tm can contribute more than 50 % of the total GPS–PWV uncertainty when using the Bevis equation, and it can decline to less than 25 % when using our time-varying Ts–Tm model. However, the uncertainty associated with surface pressure dominates the error budget of PWV (more than 75 %) when the surface pressure has an error larger than 5 hPa. GPS–PWV retrievals using different Tm estimates were compared at 74 International GNSS Service (IGS) stations. At 74.32 % of the IGS sites, the relative differences of GPS–PWV are within 1 % by applying the static or the time-varying global gridded Ts–Tm equations, while the Bevis model, the latitude-related model and the GPT2w model perform the same at 37.84 %, 41.89 % and 29.73 % of the sites. Compared with the radiosonde PWV, the error reduction in the GPS–PWV retrieval can be around 1–2 mm when using a more accurate Tm parameterization, which accounts for around 30 % of the total GPS–PWV error." @default.
- W2801244872 created "2018-05-17" @default.
- W2801244872 creator A5011944329 @default.
- W2801244872 creator A5028970592 @default.
- W2801244872 creator A5050144253 @default.
- W2801244872 creator A5079230801 @default.
- W2801244872 creator A5088010841 @default.
- W2801244872 creator A5089357748 @default.
- W2801244872 date "2019-02-27" @default.
- W2801244872 modified "2023-10-03" @default.
- W2801244872 title "Development of time-varying global gridded <i>T</i><sub>s</sub>–<i>T</i><sub>m</sub> model for precise GPS–PWV retrieval" @default.
- W2801244872 cites W1507294594 @default.
- W2801244872 cites W1560733077 @default.
- W2801244872 cites W1877008741 @default.
- W2801244872 cites W1878374117 @default.
- W2801244872 cites W1965339101 @default.
- W2801244872 cites W1968365752 @default.
- W2801244872 cites W1974536365 @default.
- W2801244872 cites W1983418403 @default.
- W2801244872 cites W2001402809 @default.
- W2801244872 cites W2003833234 @default.
- W2801244872 cites W2006028844 @default.
- W2801244872 cites W2010097055 @default.
- W2801244872 cites W2014310987 @default.
- W2801244872 cites W2018874360 @default.
- W2801244872 cites W2028556796 @default.
- W2801244872 cites W2029578467 @default.
- W2801244872 cites W2040159701 @default.
- W2801244872 cites W2043076210 @default.
- W2801244872 cites W2045488359 @default.
- W2801244872 cites W2048489440 @default.
- W2801244872 cites W2081182187 @default.
- W2801244872 cites W2099709168 @default.
- W2801244872 cites W2103218963 @default.
- W2801244872 cites W2107971176 @default.
- W2801244872 cites W2112306707 @default.
- W2801244872 cites W2124772776 @default.
- W2801244872 cites W2140035390 @default.
- W2801244872 cites W2144878283 @default.
- W2801244872 cites W2150047669 @default.
- W2801244872 cites W2209620631 @default.
- W2801244872 cites W2284447156 @default.
- W2801244872 cites W2296824398 @default.
- W2801244872 cites W2318489952 @default.
- W2801244872 cites W2322308136 @default.
- W2801244872 cites W2346521893 @default.
- W2801244872 cites W2511264014 @default.
- W2801244872 cites W2519974541 @default.
- W2801244872 cites W2899183935 @default.
- W2801244872 cites W32663557 @default.
- W2801244872 doi "https://doi.org/10.5194/amt-12-1233-2019" @default.
- W2801244872 hasPublicationYear "2019" @default.
- W2801244872 type Work @default.
- W2801244872 sameAs 2801244872 @default.
- W2801244872 citedByCount "10" @default.
- W2801244872 countsByYear W28012448722020 @default.
- W2801244872 countsByYear W28012448722021 @default.
- W2801244872 countsByYear W28012448722022 @default.
- W2801244872 countsByYear W28012448722023 @default.
- W2801244872 crossrefType "journal-article" @default.
- W2801244872 hasAuthorship W2801244872A5011944329 @default.
- W2801244872 hasAuthorship W2801244872A5028970592 @default.
- W2801244872 hasAuthorship W2801244872A5050144253 @default.
- W2801244872 hasAuthorship W2801244872A5079230801 @default.
- W2801244872 hasAuthorship W2801244872A5088010841 @default.
- W2801244872 hasAuthorship W2801244872A5089357748 @default.
- W2801244872 hasBestOaLocation W28012448721 @default.
- W2801244872 hasConcept C105795698 @default.
- W2801244872 hasConcept C11999413 @default.
- W2801244872 hasConcept C122523270 @default.
- W2801244872 hasConcept C13280743 @default.
- W2801244872 hasConcept C147534773 @default.
- W2801244872 hasConcept C153294291 @default.
- W2801244872 hasConcept C156008332 @default.
- W2801244872 hasConcept C205649164 @default.
- W2801244872 hasConcept C33923547 @default.
- W2801244872 hasConcept C3770464 @default.
- W2801244872 hasConcept C39432304 @default.
- W2801244872 hasConcept C41008148 @default.
- W2801244872 hasConcept C53970728 @default.
- W2801244872 hasConcept C60229501 @default.
- W2801244872 hasConcept C76155785 @default.
- W2801244872 hasConceptScore W2801244872C105795698 @default.
- W2801244872 hasConceptScore W2801244872C11999413 @default.
- W2801244872 hasConceptScore W2801244872C122523270 @default.
- W2801244872 hasConceptScore W2801244872C13280743 @default.
- W2801244872 hasConceptScore W2801244872C147534773 @default.
- W2801244872 hasConceptScore W2801244872C153294291 @default.
- W2801244872 hasConceptScore W2801244872C156008332 @default.
- W2801244872 hasConceptScore W2801244872C205649164 @default.
- W2801244872 hasConceptScore W2801244872C33923547 @default.
- W2801244872 hasConceptScore W2801244872C3770464 @default.
- W2801244872 hasConceptScore W2801244872C39432304 @default.
- W2801244872 hasConceptScore W2801244872C41008148 @default.
- W2801244872 hasConceptScore W2801244872C53970728 @default.
- W2801244872 hasConceptScore W2801244872C60229501 @default.
- W2801244872 hasConceptScore W2801244872C76155785 @default.
- W2801244872 hasFunder F4320321001 @default.