Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801277493> ?p ?o ?g. }
- W2801277493 endingPage "28" @default.
- W2801277493 startingPage "1" @default.
- W2801277493 abstract "What deep learning lacks at the moment is the heterogeneous and dynamic capabilities of the human system. In part, this is because a single architecture is not currently capable of the level of modeling and representation of the complex human system. Therefore, a heterogeneous set of pathways from sensory stimulus to cognitive function needs to be developed in a richer computational model. Herein, we explore the learning of multiple pathways–as different deep neural network architectures–coupled with appropriate data/information fusion. Specifically, we explore the advantage of data-driven optimization of fusing different deep nets–GoogleNet, CaffeNet and ResNet–at a per class (neuron) or shared weight (single data fusion across classes) fashion. In addition, we explore indices that tell us the importance of each network, how they interact and what aggregation was learned. Experiments are provided in the context of remote sensing on the UC Merced and WHU-RS19 data sets. In particular, we show that fusion is the top performer, each network is needed across the various target classes, and unique aggregations (i.e., not common operators) are learned." @default.
- W2801277493 created "2018-05-17" @default.
- W2801277493 creator A5015876321 @default.
- W2801277493 creator A5033279986 @default.
- W2801277493 creator A5051712346 @default.
- W2801277493 creator A5076164452 @default.
- W2801277493 creator A5080519665 @default.
- W2801277493 date "2018-01-01" @default.
- W2801277493 modified "2023-09-28" @default.
- W2801277493 title "Fuzzy Choquet Integration of Deep Convolutional Neural Networks for Remote Sensing" @default.
- W2801277493 cites W1849277567 @default.
- W2801277493 cites W1870293938 @default.
- W2801277493 cites W1920235975 @default.
- W2801277493 cites W1950365613 @default.
- W2801277493 cites W1963882359 @default.
- W2801277493 cites W1969855798 @default.
- W2801277493 cites W197865394 @default.
- W2801277493 cites W1980038761 @default.
- W2801277493 cites W1988720110 @default.
- W2801277493 cites W1995341919 @default.
- W2801277493 cites W1998489088 @default.
- W2801277493 cites W2008552241 @default.
- W2801277493 cites W2009662043 @default.
- W2801277493 cites W2013526887 @default.
- W2801277493 cites W2016458917 @default.
- W2801277493 cites W2020912318 @default.
- W2801277493 cites W2025768430 @default.
- W2801277493 cites W2030931924 @default.
- W2801277493 cites W2036234778 @default.
- W2801277493 cites W2046223100 @default.
- W2801277493 cites W2058580716 @default.
- W2801277493 cites W2060907774 @default.
- W2801277493 cites W2062167100 @default.
- W2801277493 cites W2066916495 @default.
- W2801277493 cites W2089222270 @default.
- W2801277493 cites W2097820676 @default.
- W2801277493 cites W2100495367 @default.
- W2801277493 cites W2101206561 @default.
- W2801277493 cites W2107305286 @default.
- W2801277493 cites W2115998893 @default.
- W2801277493 cites W2117130368 @default.
- W2801277493 cites W2124073038 @default.
- W2801277493 cites W2130325614 @default.
- W2801277493 cites W2130945052 @default.
- W2801277493 cites W2132424367 @default.
- W2801277493 cites W2141125852 @default.
- W2801277493 cites W2141200610 @default.
- W2801277493 cites W2154789478 @default.
- W2801277493 cites W2155893237 @default.
- W2801277493 cites W2159033850 @default.
- W2801277493 cites W2165878760 @default.
- W2801277493 cites W2171928131 @default.
- W2801277493 cites W2172928631 @default.
- W2801277493 cites W2183341477 @default.
- W2801277493 cites W2278533044 @default.
- W2801277493 cites W2293078015 @default.
- W2801277493 cites W2345459205 @default.
- W2801277493 cites W2361164429 @default.
- W2801277493 cites W2487466275 @default.
- W2801277493 cites W2509938168 @default.
- W2801277493 cites W2558299738 @default.
- W2801277493 cites W2559671899 @default.
- W2801277493 cites W2588561483 @default.
- W2801277493 cites W2611606123 @default.
- W2801277493 cites W2625548508 @default.
- W2801277493 cites W2739190510 @default.
- W2801277493 cites W2745935280 @default.
- W2801277493 cites W2749840038 @default.
- W2801277493 cites W2750239752 @default.
- W2801277493 cites W2759986694 @default.
- W2801277493 cites W3104341624 @default.
- W2801277493 cites W4211007335 @default.
- W2801277493 cites W4245256727 @default.
- W2801277493 cites W4248710273 @default.
- W2801277493 cites W946771493 @default.
- W2801277493 doi "https://doi.org/10.1007/978-3-319-89629-8_1" @default.
- W2801277493 hasPublicationYear "2018" @default.
- W2801277493 type Work @default.
- W2801277493 sameAs 2801277493 @default.
- W2801277493 citedByCount "19" @default.
- W2801277493 countsByYear W28012774932018 @default.
- W2801277493 countsByYear W28012774932019 @default.
- W2801277493 countsByYear W28012774932020 @default.
- W2801277493 countsByYear W28012774932021 @default.
- W2801277493 countsByYear W28012774932022 @default.
- W2801277493 crossrefType "book-chapter" @default.
- W2801277493 hasAuthorship W2801277493A5015876321 @default.
- W2801277493 hasAuthorship W2801277493A5033279986 @default.
- W2801277493 hasAuthorship W2801277493A5051712346 @default.
- W2801277493 hasAuthorship W2801277493A5076164452 @default.
- W2801277493 hasAuthorship W2801277493A5080519665 @default.
- W2801277493 hasConcept C119857082 @default.
- W2801277493 hasConcept C153180895 @default.
- W2801277493 hasConcept C154945302 @default.
- W2801277493 hasConcept C41008148 @default.
- W2801277493 hasConcept C58166 @default.
- W2801277493 hasConcept C81363708 @default.
- W2801277493 hasConceptScore W2801277493C119857082 @default.