Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801291332> ?p ?o ?g. }
- W2801291332 endingPage "4360" @default.
- W2801291332 startingPage "4346" @default.
- W2801291332 abstract "Tuberculosis is a global health dilemma. In 2016, the WHO reported 10.4 million incidences and 1.7 million deaths. The need to develop new treatments for those infected with Mycobacterium tuberculosis (Mtb) has led to many large-scale phenotypic screens and many thousands of new active compounds identified in vitro. However, with limited funding, efforts to discover new active molecules against Mtb needs to be more efficient. Several computational machine learning approaches have been shown to have good enrichment and hit rates. We have curated small molecule Mtb data and developed new models with a total of 18,886 molecules with activity cutoffs of 10 μM, 1 μM, and 100 nM. These data sets were used to evaluate different machine learning methods (including deep learning) and metrics and to generate predictions for additional molecules published in 2017. One Mtb model, a combined in vitro and in vivo data Bayesian model at a 100 nM activity yielded the following metrics for 5-fold cross validation: accuracy = 0.88, precision = 0.22, recall = 0.91, specificity = 0.88, kappa = 0.31, and MCC = 0.41. We have also curated an evaluation set (n = 153 compounds) published in 2017, and when used to test our model, it showed the comparable statistics (accuracy = 0.83, precision = 0.27, recall = 1.00, specificity = 0.81, kappa = 0.36, and MCC = 0.47). We have also compared these models with additional machine learning algorithms showing Bayesian machine learning models constructed with literature Mtb data generated by different laboratories generally were equivalent to or outperformed deep neural networks with external test sets. Finally, we have also compared our training and test sets to show they were suitably diverse and different in order to represent useful evaluation sets. Such Mtb machine learning models could help prioritize compounds for testing in vitro and in vivo." @default.
- W2801291332 created "2018-05-17" @default.
- W2801291332 creator A5005108258 @default.
- W2801291332 creator A5016192450 @default.
- W2801291332 creator A5020225170 @default.
- W2801291332 creator A5034678376 @default.
- W2801291332 creator A5040232853 @default.
- W2801291332 creator A5044700909 @default.
- W2801291332 creator A5052699020 @default.
- W2801291332 creator A5066715892 @default.
- W2801291332 creator A5070164801 @default.
- W2801291332 creator A5073973321 @default.
- W2801291332 date "2018-04-19" @default.
- W2801291332 modified "2023-10-17" @default.
- W2801291332 title "Comparing and Validating Machine Learning Models for <i>Mycobacterium tuberculosis</i> Drug Discovery" @default.
- W2801291332 cites W1505191356 @default.
- W2801291332 cites W1546956326 @default.
- W2801291332 cites W1591852988 @default.
- W2801291332 cites W1891955096 @default.
- W2801291332 cites W1968135993 @default.
- W2801291332 cites W1975610050 @default.
- W2801291332 cites W1975875968 @default.
- W2801291332 cites W1978253274 @default.
- W2801291332 cites W1990919689 @default.
- W2801291332 cites W1993795323 @default.
- W2801291332 cites W1996989387 @default.
- W2801291332 cites W2007560618 @default.
- W2801291332 cites W2007705439 @default.
- W2801291332 cites W2019678805 @default.
- W2801291332 cites W2030448899 @default.
- W2801291332 cites W2041253429 @default.
- W2801291332 cites W2046613566 @default.
- W2801291332 cites W2048080607 @default.
- W2801291332 cites W2049773909 @default.
- W2801291332 cites W2053154970 @default.
- W2801291332 cites W2065130119 @default.
- W2801291332 cites W2076063813 @default.
- W2801291332 cites W2077249477 @default.
- W2801291332 cites W2077727142 @default.
- W2801291332 cites W2083155903 @default.
- W2801291332 cites W2091356402 @default.
- W2801291332 cites W2096541451 @default.
- W2801291332 cites W2098824882 @default.
- W2801291332 cites W2102952492 @default.
- W2801291332 cites W2105977990 @default.
- W2801291332 cites W2109553965 @default.
- W2801291332 cites W2109719233 @default.
- W2801291332 cites W2115544494 @default.
- W2801291332 cites W2116128143 @default.
- W2801291332 cites W2117539524 @default.
- W2801291332 cites W2124462881 @default.
- W2801291332 cites W2142553313 @default.
- W2801291332 cites W2142733912 @default.
- W2801291332 cites W2153635508 @default.
- W2801291332 cites W2159486360 @default.
- W2801291332 cites W2163576609 @default.
- W2801291332 cites W2168321453 @default.
- W2801291332 cites W2168447130 @default.
- W2801291332 cites W2171660521 @default.
- W2801291332 cites W2171830166 @default.
- W2801291332 cites W2213443318 @default.
- W2801291332 cites W2234569175 @default.
- W2801291332 cites W2266978829 @default.
- W2801291332 cites W2297389033 @default.
- W2801291332 cites W2306570595 @default.
- W2801291332 cites W2397757171 @default.
- W2801291332 cites W2401677822 @default.
- W2801291332 cites W2416103835 @default.
- W2801291332 cites W2466404575 @default.
- W2801291332 cites W2473066820 @default.
- W2801291332 cites W2475497235 @default.
- W2801291332 cites W2519019522 @default.
- W2801291332 cites W2521240308 @default.
- W2801291332 cites W2528502090 @default.
- W2801291332 cites W2541191377 @default.
- W2801291332 cites W2548232666 @default.
- W2801291332 cites W2548252423 @default.
- W2801291332 cites W2550228307 @default.
- W2801291332 cites W2562301581 @default.
- W2801291332 cites W2574276598 @default.
- W2801291332 cites W2594259713 @default.
- W2801291332 cites W2596928891 @default.
- W2801291332 cites W2606227856 @default.
- W2801291332 cites W2612443835 @default.
- W2801291332 cites W2613544251 @default.
- W2801291332 cites W2617089932 @default.
- W2801291332 cites W2626367965 @default.
- W2801291332 cites W2626565355 @default.
- W2801291332 cites W2753588101 @default.
- W2801291332 cites W2766761250 @default.
- W2801291332 cites W2782111507 @default.
- W2801291332 cites W2790808809 @default.
- W2801291332 cites W2795068716 @default.
- W2801291332 cites W3021575798 @default.
- W2801291332 cites W342897826 @default.
- W2801291332 doi "https://doi.org/10.1021/acs.molpharmaceut.8b00083" @default.
- W2801291332 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6167198" @default.
- W2801291332 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29672063" @default.