Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801320835> ?p ?o ?g. }
- W2801320835 endingPage "123" @default.
- W2801320835 startingPage "113" @default.
- W2801320835 abstract "Recommender systems have become increasingly essential in many domains for alleviating the problem of information overload, but existing recommendation techniques suffer from data sparsity and transparency issues. In this paper, we show that the adjective features embedded in user reviews can be used by the recommendation techniques to address the sparsity and transparency problems. We extend the standard frequency-inverse document frequency (TF-IDF) term weighting scheme by introducing nearest neighbors frequency (NNF) to automatically extract high-quality adjective features from user reviews, and incorporate the extracted adjective features into a specific recommendation technique to show effectiveness. The results of experiments conducted on real-world datasets show that the integrated method reduced the prediction errors of the state-of-the-art rating-based method by 19.5% in extremely sparse settings. When compared with the state-of-the-art tag-based method, the proposed method reduced the prediction errors by 11.3%, and increased the interest similarity in similar user identification by 7.1%." @default.
- W2801320835 created "2018-05-17" @default.
- W2801320835 creator A5016093986 @default.
- W2801320835 creator A5059780231 @default.
- W2801320835 creator A5077503315 @default.
- W2801320835 date "2018-05-01" @default.
- W2801320835 modified "2023-10-14" @default.
- W2801320835 title "Do adjective features from user reviews address sparsity and transparency in recommender systems?" @default.
- W2801320835 cites W1276866904 @default.
- W2801320835 cites W1480176536 @default.
- W2801320835 cites W1880262756 @default.
- W2801320835 cites W1982895893 @default.
- W2801320835 cites W1996430422 @default.
- W2801320835 cites W2025954161 @default.
- W2801320835 cites W2034598496 @default.
- W2801320835 cites W2040974535 @default.
- W2801320835 cites W2042281163 @default.
- W2801320835 cites W2044591816 @default.
- W2801320835 cites W2049478259 @default.
- W2801320835 cites W2050265055 @default.
- W2801320835 cites W2053466245 @default.
- W2801320835 cites W2058671303 @default.
- W2801320835 cites W2061118645 @default.
- W2801320835 cites W2084686178 @default.
- W2801320835 cites W2108630796 @default.
- W2801320835 cites W2116206254 @default.
- W2801320835 cites W2124190961 @default.
- W2801320835 cites W2142972908 @default.
- W2801320835 cites W2146030484 @default.
- W2801320835 cites W2152184085 @default.
- W2801320835 cites W2153345653 @default.
- W2801320835 cites W2155106456 @default.
- W2801320835 cites W2160409620 @default.
- W2801320835 cites W2171960770 @default.
- W2801320835 cites W2244405900 @default.
- W2801320835 cites W2336195973 @default.
- W2801320835 cites W2408821365 @default.
- W2801320835 cites W2508844218 @default.
- W2801320835 cites W2510645328 @default.
- W2801320835 cites W2511357636 @default.
- W2801320835 cites W2604334159 @default.
- W2801320835 cites W2733771179 @default.
- W2801320835 cites W2745736192 @default.
- W2801320835 doi "https://doi.org/10.1016/j.elerap.2018.04.002" @default.
- W2801320835 hasPublicationYear "2018" @default.
- W2801320835 type Work @default.
- W2801320835 sameAs 2801320835 @default.
- W2801320835 citedByCount "7" @default.
- W2801320835 countsByYear W28013208352018 @default.
- W2801320835 countsByYear W28013208352019 @default.
- W2801320835 countsByYear W28013208352020 @default.
- W2801320835 countsByYear W28013208352022 @default.
- W2801320835 crossrefType "journal-article" @default.
- W2801320835 hasAuthorship W2801320835A5016093986 @default.
- W2801320835 hasAuthorship W2801320835A5059780231 @default.
- W2801320835 hasAuthorship W2801320835A5077503315 @default.
- W2801320835 hasConcept C103278499 @default.
- W2801320835 hasConcept C115961682 @default.
- W2801320835 hasConcept C119857082 @default.
- W2801320835 hasConcept C121332964 @default.
- W2801320835 hasConcept C121934690 @default.
- W2801320835 hasConcept C124101348 @default.
- W2801320835 hasConcept C126838900 @default.
- W2801320835 hasConcept C136764020 @default.
- W2801320835 hasConcept C153180895 @default.
- W2801320835 hasConcept C154945302 @default.
- W2801320835 hasConcept C183115368 @default.
- W2801320835 hasConcept C186625053 @default.
- W2801320835 hasConcept C23123220 @default.
- W2801320835 hasConcept C2777683214 @default.
- W2801320835 hasConcept C2780233690 @default.
- W2801320835 hasConcept C2780762811 @default.
- W2801320835 hasConcept C38652104 @default.
- W2801320835 hasConcept C41008148 @default.
- W2801320835 hasConcept C557471498 @default.
- W2801320835 hasConcept C61797465 @default.
- W2801320835 hasConcept C62520636 @default.
- W2801320835 hasConcept C71924100 @default.
- W2801320835 hasConcept C81758059 @default.
- W2801320835 hasConceptScore W2801320835C103278499 @default.
- W2801320835 hasConceptScore W2801320835C115961682 @default.
- W2801320835 hasConceptScore W2801320835C119857082 @default.
- W2801320835 hasConceptScore W2801320835C121332964 @default.
- W2801320835 hasConceptScore W2801320835C121934690 @default.
- W2801320835 hasConceptScore W2801320835C124101348 @default.
- W2801320835 hasConceptScore W2801320835C126838900 @default.
- W2801320835 hasConceptScore W2801320835C136764020 @default.
- W2801320835 hasConceptScore W2801320835C153180895 @default.
- W2801320835 hasConceptScore W2801320835C154945302 @default.
- W2801320835 hasConceptScore W2801320835C183115368 @default.
- W2801320835 hasConceptScore W2801320835C186625053 @default.
- W2801320835 hasConceptScore W2801320835C23123220 @default.
- W2801320835 hasConceptScore W2801320835C2777683214 @default.
- W2801320835 hasConceptScore W2801320835C2780233690 @default.
- W2801320835 hasConceptScore W2801320835C2780762811 @default.
- W2801320835 hasConceptScore W2801320835C38652104 @default.
- W2801320835 hasConceptScore W2801320835C41008148 @default.
- W2801320835 hasConceptScore W2801320835C557471498 @default.