Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801370692> ?p ?o ?g. }
- W2801370692 endingPage "24693" @default.
- W2801370692 startingPage "24680" @default.
- W2801370692 abstract "In recent years, the classification of breast cancer has been the topic of interest in the field of Healthcare informatics, because it is the second main cause of cancer-related deaths in women. Breast cancer can be identified using a biopsy where tissue is removed and studied under microscope. The diagnosis is based on the qualification of the histopathologist, who will look for abnormal cells. However, if the histopathologist is not well-trained, this may lead to wrong diagnosis. With the recent advances in image processing and machine learning, there is an interest in attempting to develop a reliable pattern recognition based systems to improve the quality of diagnosis. In this paper, we compare two machine learning approaches for the automatic classification of breast cancer histology images into benign and malignant and into benign and malignant sub-classes. The first approach is based on the extraction of a set of handcrafted features encoded by two coding models (bag of words and locality constrained linear coding) and trained by support vector machines, while the second approach is based on the design of convolutional neural networks. We have also experimentally tested dataset augmentation techniques to enhance the accuracy of the convolutional neural network as well as “handcrafted features + convolutional neural network”and “convolutional neural network features + classifier”configurations. The results show convolutional neural networks outperformed the handcrafted feature based classifier, where we achieved accuracy between 96.15% and 98.33% for the binary classification and 83.31% and 88.23% for the multi-class classification." @default.
- W2801370692 created "2018-05-17" @default.
- W2801370692 creator A5016038041 @default.
- W2801370692 creator A5020280283 @default.
- W2801370692 creator A5076384698 @default.
- W2801370692 date "2018-01-01" @default.
- W2801370692 modified "2023-10-11" @default.
- W2801370692 title "Classification of Breast Cancer Based on Histology Images Using Convolutional Neural Networks" @default.
- W2801370692 cites W1599611047 @default.
- W2801370692 cites W1711703781 @default.
- W2801370692 cites W1791065060 @default.
- W2801370692 cites W1965451568 @default.
- W2801370692 cites W1984372368 @default.
- W2801370692 cites W1995562189 @default.
- W2801370692 cites W2027922120 @default.
- W2801370692 cites W2056499382 @default.
- W2801370692 cites W2066941820 @default.
- W2801370692 cites W2085721351 @default.
- W2801370692 cites W2093030207 @default.
- W2801370692 cites W2097117768 @default.
- W2801370692 cites W2102605133 @default.
- W2801370692 cites W2104978738 @default.
- W2801370692 cites W2107034620 @default.
- W2801370692 cites W2112796928 @default.
- W2801370692 cites W2117510288 @default.
- W2801370692 cites W2119605622 @default.
- W2801370692 cites W2131344117 @default.
- W2801370692 cites W2147277317 @default.
- W2801370692 cites W2148596671 @default.
- W2801370692 cites W2151608510 @default.
- W2801370692 cites W2153635508 @default.
- W2801370692 cites W2155893237 @default.
- W2801370692 cites W2162915993 @default.
- W2801370692 cites W2344480160 @default.
- W2801370692 cites W2346957300 @default.
- W2801370692 cites W2467496703 @default.
- W2801370692 cites W2511479398 @default.
- W2801370692 cites W2554892747 @default.
- W2801370692 cites W2609584387 @default.
- W2801370692 cites W2618530766 @default.
- W2801370692 cites W2620578070 @default.
- W2801370692 cites W2771292748 @default.
- W2801370692 cites W2788072220 @default.
- W2801370692 cites W3102042549 @default.
- W2801370692 doi "https://doi.org/10.1109/access.2018.2831280" @default.
- W2801370692 hasPublicationYear "2018" @default.
- W2801370692 type Work @default.
- W2801370692 sameAs 2801370692 @default.
- W2801370692 citedByCount "253" @default.
- W2801370692 countsByYear W28013706922018 @default.
- W2801370692 countsByYear W28013706922019 @default.
- W2801370692 countsByYear W28013706922020 @default.
- W2801370692 countsByYear W28013706922021 @default.
- W2801370692 countsByYear W28013706922022 @default.
- W2801370692 countsByYear W28013706922023 @default.
- W2801370692 crossrefType "journal-article" @default.
- W2801370692 hasAuthorship W2801370692A5016038041 @default.
- W2801370692 hasAuthorship W2801370692A5020280283 @default.
- W2801370692 hasAuthorship W2801370692A5076384698 @default.
- W2801370692 hasBestOaLocation W28013706921 @default.
- W2801370692 hasConcept C108583219 @default.
- W2801370692 hasConcept C115961682 @default.
- W2801370692 hasConcept C119857082 @default.
- W2801370692 hasConcept C121608353 @default.
- W2801370692 hasConcept C12267149 @default.
- W2801370692 hasConcept C126322002 @default.
- W2801370692 hasConcept C153180895 @default.
- W2801370692 hasConcept C154945302 @default.
- W2801370692 hasConcept C41008148 @default.
- W2801370692 hasConcept C50644808 @default.
- W2801370692 hasConcept C52622490 @default.
- W2801370692 hasConcept C530470458 @default.
- W2801370692 hasConcept C66905080 @default.
- W2801370692 hasConcept C71924100 @default.
- W2801370692 hasConcept C75294576 @default.
- W2801370692 hasConcept C81363708 @default.
- W2801370692 hasConcept C95623464 @default.
- W2801370692 hasConceptScore W2801370692C108583219 @default.
- W2801370692 hasConceptScore W2801370692C115961682 @default.
- W2801370692 hasConceptScore W2801370692C119857082 @default.
- W2801370692 hasConceptScore W2801370692C121608353 @default.
- W2801370692 hasConceptScore W2801370692C12267149 @default.
- W2801370692 hasConceptScore W2801370692C126322002 @default.
- W2801370692 hasConceptScore W2801370692C153180895 @default.
- W2801370692 hasConceptScore W2801370692C154945302 @default.
- W2801370692 hasConceptScore W2801370692C41008148 @default.
- W2801370692 hasConceptScore W2801370692C50644808 @default.
- W2801370692 hasConceptScore W2801370692C52622490 @default.
- W2801370692 hasConceptScore W2801370692C530470458 @default.
- W2801370692 hasConceptScore W2801370692C66905080 @default.
- W2801370692 hasConceptScore W2801370692C71924100 @default.
- W2801370692 hasConceptScore W2801370692C75294576 @default.
- W2801370692 hasConceptScore W2801370692C81363708 @default.
- W2801370692 hasConceptScore W2801370692C95623464 @default.
- W2801370692 hasLocation W28013706921 @default.
- W2801370692 hasLocation W28013706922 @default.
- W2801370692 hasOpenAccess W2801370692 @default.
- W2801370692 hasPrimaryLocation W28013706921 @default.