Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801382203> ?p ?o ?g. }
- W2801382203 endingPage "717" @default.
- W2801382203 startingPage "703" @default.
- W2801382203 abstract "The early eye tracking studies of Yarbus provided descriptive evidence that an observer’s task influences patterns of eye movements, leading to the tantalizing prospect that an observer’s intentions could be inferred from their saccade behavior. We investigate the predictive value of task and eye movement properties by creating a computational cognitive model of saccade selection based on instructed task and internal cognitive state using a Dynamic Bayesian Network (DBN). Understanding how humans generate saccades under different conditions and cognitive sets links recent work on salience models of low-level vision with higher level cognitive goals. This model provides a Bayesian, cognitive approach to top-down transitions in attentional set in pre-frontal areas along with vector-based saccade generation from the superior colliculus. Our approach is to begin with eye movement data that has previously been shown to differ across task. We first present an analysis of the extent to which individual saccadic features are diagnostic of an observer’s task. Second, we use those features to infer an underlying cognitive state that potentially differs from the instructed task. Finally, we demonstrate how changes of cognitive state over time can be incorporated into a generative model of eye movement vectors without resorting to an external decision homunculus. Internal cognitive state frees the model from the assumption that instructed task is the only factor influencing observers’ saccadic behavior. While the inclusion of hidden temporal state does not improve the classification accuracy of the model, it does allow accurate prediction of saccadic sequence results observed in search paradigms. Given the generative nature of this model, it is capable of saccadic simulation in real time. We demonstrated that the properties from its generated saccadic vectors closely match those of human observers given a particular task and cognitive state. Many current models of vision focus entirely on bottom-up salience to produce estimates of spatial “areas of interest” within a visual scene. While a few recent models do add top-down knowledge and task information, we believe our contribution is important in three key ways. First, we incorporate task as learned attentional sets that are capable of self-transition given only information available to the visual system. This matches influential theories of bias signals by (Miller and Cohen Annu Rev Neurosci 24:167–202, 2001) and implements selection of state without simply shifting the decision to an external homunculus. Second, our model is generative and capable of predicting sequence artifacts in saccade generation like those found in visual search. Third, our model generates relative saccadic vector information as opposed to absolute spatial coordinates. This matches more closely the internal saccadic representations as they are generated in the superior colliculus." @default.
- W2801382203 created "2018-05-17" @default.
- W2801382203 creator A5001690477 @default.
- W2801382203 creator A5027428093 @default.
- W2801382203 creator A5055927639 @default.
- W2801382203 creator A5060334615 @default.
- W2801382203 date "2018-05-09" @default.
- W2801382203 modified "2023-09-30" @default.
- W2801382203 title "A Generative Model of Cognitive State from Task and Eye Movements" @default.
- W2801382203 cites W1133916940 @default.
- W2801382203 cites W145980366 @default.
- W2801382203 cites W1485980256 @default.
- W2801382203 cites W1509615457 @default.
- W2801382203 cites W1630463403 @default.
- W2801382203 cites W1642141456 @default.
- W2801382203 cites W1870066495 @default.
- W2801382203 cites W1957364793 @default.
- W2801382203 cites W1981616671 @default.
- W2801382203 cites W1982678265 @default.
- W2801382203 cites W1983212983 @default.
- W2801382203 cites W1985690171 @default.
- W2801382203 cites W1990368529 @default.
- W2801382203 cites W1998938084 @default.
- W2801382203 cites W2011430131 @default.
- W2801382203 cites W2019370496 @default.
- W2801382203 cites W2021201127 @default.
- W2801382203 cites W2023180619 @default.
- W2801382203 cites W2026863865 @default.
- W2801382203 cites W2028013073 @default.
- W2801382203 cites W2028765294 @default.
- W2801382203 cites W2030031014 @default.
- W2801382203 cites W2030084812 @default.
- W2801382203 cites W2033362164 @default.
- W2801382203 cites W2033915610 @default.
- W2801382203 cites W2046775124 @default.
- W2801382203 cites W2059196018 @default.
- W2801382203 cites W2065406768 @default.
- W2801382203 cites W2067450646 @default.
- W2801382203 cites W2074693532 @default.
- W2801382203 cites W2077551945 @default.
- W2801382203 cites W2080317558 @default.
- W2801382203 cites W2081913479 @default.
- W2801382203 cites W2094187780 @default.
- W2801382203 cites W2094539281 @default.
- W2801382203 cites W2096352448 @default.
- W2801382203 cites W2098170217 @default.
- W2801382203 cites W2098780161 @default.
- W2801382203 cites W2109864855 @default.
- W2801382203 cites W2111465651 @default.
- W2801382203 cites W2115095583 @default.
- W2801382203 cites W2117104656 @default.
- W2801382203 cites W2117563204 @default.
- W2801382203 cites W2118108312 @default.
- W2801382203 cites W2119577735 @default.
- W2801382203 cites W2120273207 @default.
- W2801382203 cites W2124537004 @default.
- W2801382203 cites W2126699625 @default.
- W2801382203 cites W2127354632 @default.
- W2801382203 cites W2129158941 @default.
- W2801382203 cites W2129785863 @default.
- W2801382203 cites W2132172482 @default.
- W2801382203 cites W2135682029 @default.
- W2801382203 cites W2141936912 @default.
- W2801382203 cites W2142635246 @default.
- W2801382203 cites W2144764737 @default.
- W2801382203 cites W2149095485 @default.
- W2801382203 cites W2151137320 @default.
- W2801382203 cites W2156958005 @default.
- W2801382203 cites W2162957977 @default.
- W2801382203 cites W2165175512 @default.
- W2801382203 cites W2210396547 @default.
- W2801382203 cites W2300201491 @default.
- W2801382203 cites W2312708194 @default.
- W2801382203 cites W2343046130 @default.
- W2801382203 cites W2344531169 @default.
- W2801382203 cites W2409576149 @default.
- W2801382203 cites W2513378728 @default.
- W2801382203 cites W2589634675 @default.
- W2801382203 cites W2601738555 @default.
- W2801382203 cites W2612258195 @default.
- W2801382203 cites W4229580337 @default.
- W2801382203 cites W4231623949 @default.
- W2801382203 doi "https://doi.org/10.1007/s12559-018-9558-9" @default.
- W2801382203 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6367733" @default.
- W2801382203 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/30740186" @default.
- W2801382203 hasPublicationYear "2018" @default.
- W2801382203 type Work @default.
- W2801382203 sameAs 2801382203 @default.
- W2801382203 citedByCount "9" @default.
- W2801382203 countsByYear W28013822032019 @default.
- W2801382203 countsByYear W28013822032020 @default.
- W2801382203 countsByYear W28013822032021 @default.
- W2801382203 countsByYear W28013822032022 @default.
- W2801382203 countsByYear W28013822032023 @default.
- W2801382203 crossrefType "journal-article" @default.
- W2801382203 hasAuthorship W2801382203A5001690477 @default.
- W2801382203 hasAuthorship W2801382203A5027428093 @default.
- W2801382203 hasAuthorship W2801382203A5055927639 @default.