Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801396593> ?p ?o ?g. }
- W2801396593 endingPage "178" @default.
- W2801396593 startingPage "167" @default.
- W2801396593 abstract "As the rolling bearings being the key part of rotary machine, its healthy condition is quite important for safety production. Fault diagnosis of rolling bearing has been research focus for the sake of improving the economic efficiency and guaranteeing the operation security. However, the collected signals are mixed with ambient noise during the operation of rotary machine, which brings great challenge to the exact diagnosis results. Using signals collected from multiple sensors can avoid the loss of local information and extract more helpful characteristics. Recurrent Neural Networks (RNN) is a type of artificial neural network which can deal with multiple time sequence data. The capacity of RNN has been proved outstanding for catching time relevance about time sequence data. This paper proposed a novel method for bearing fault diagnosis with RNN in the form of an autoencoder. In this approach, multiple vibration value of the rolling bearings of the next period are predicted from the previous period by means of Gated Recurrent Unit (GRU)-based denoising autoencoder. These GRU-based non-linear predictive denoising autoencoders (GRU-NP-DAEs) are trained with strong generalization ability for each different fault pattern. Then for the given input data, the reconstruction errors between the next period data and the output data generated by different GRU-NP-DAEs are used to detect anomalous conditions and classify fault type. Classic rotating machinery datasets have been employed to testify the effectiveness of the proposed diagnosis method and its preponderance over some state-of-the-art methods. The experiment results indicate that the proposed method achieves satisfactory performance with strong robustness and high classification accuracy." @default.
- W2801396593 created "2018-05-17" @default.
- W2801396593 creator A5003862827 @default.
- W2801396593 creator A5014462835 @default.
- W2801396593 creator A5028800902 @default.
- W2801396593 creator A5040477650 @default.
- W2801396593 creator A5085144620 @default.
- W2801396593 date "2018-06-01" @default.
- W2801396593 modified "2023-10-14" @default.
- W2801396593 title "Fault diagnosis of rolling bearings with recurrent neural network-based autoencoders" @default.
- W2801396593 cites W1855550284 @default.
- W2801396593 cites W2018179115 @default.
- W2801396593 cites W2019900743 @default.
- W2801396593 cites W2020851226 @default.
- W2801396593 cites W2100495367 @default.
- W2801396593 cites W2101172034 @default.
- W2801396593 cites W2103165366 @default.
- W2801396593 cites W2123649031 @default.
- W2801396593 cites W2189716956 @default.
- W2801396593 cites W2321143615 @default.
- W2801396593 cites W2324044936 @default.
- W2801396593 cites W2415795929 @default.
- W2801396593 cites W243674440 @default.
- W2801396593 cites W2471636057 @default.
- W2801396593 cites W2480364715 @default.
- W2801396593 cites W2516154524 @default.
- W2801396593 cites W2518980640 @default.
- W2801396593 cites W2554676782 @default.
- W2801396593 cites W2558017956 @default.
- W2801396593 cites W2591055632 @default.
- W2801396593 cites W2601590138 @default.
- W2801396593 doi "https://doi.org/10.1016/j.isatra.2018.04.005" @default.
- W2801396593 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29681393" @default.
- W2801396593 hasPublicationYear "2018" @default.
- W2801396593 type Work @default.
- W2801396593 sameAs 2801396593 @default.
- W2801396593 citedByCount "326" @default.
- W2801396593 countsByYear W28013965932019 @default.
- W2801396593 countsByYear W28013965932020 @default.
- W2801396593 countsByYear W28013965932021 @default.
- W2801396593 countsByYear W28013965932022 @default.
- W2801396593 countsByYear W28013965932023 @default.
- W2801396593 crossrefType "journal-article" @default.
- W2801396593 hasAuthorship W2801396593A5003862827 @default.
- W2801396593 hasAuthorship W2801396593A5014462835 @default.
- W2801396593 hasAuthorship W2801396593A5028800902 @default.
- W2801396593 hasAuthorship W2801396593A5040477650 @default.
- W2801396593 hasAuthorship W2801396593A5085144620 @default.
- W2801396593 hasConcept C101738243 @default.
- W2801396593 hasConcept C115961682 @default.
- W2801396593 hasConcept C127313418 @default.
- W2801396593 hasConcept C127413603 @default.
- W2801396593 hasConcept C134306372 @default.
- W2801396593 hasConcept C147168706 @default.
- W2801396593 hasConcept C153180895 @default.
- W2801396593 hasConcept C154945302 @default.
- W2801396593 hasConcept C163294075 @default.
- W2801396593 hasConcept C165205528 @default.
- W2801396593 hasConcept C175551986 @default.
- W2801396593 hasConcept C177148314 @default.
- W2801396593 hasConcept C199978012 @default.
- W2801396593 hasConcept C33923547 @default.
- W2801396593 hasConcept C41008148 @default.
- W2801396593 hasConcept C50644808 @default.
- W2801396593 hasConcept C99498987 @default.
- W2801396593 hasConceptScore W2801396593C101738243 @default.
- W2801396593 hasConceptScore W2801396593C115961682 @default.
- W2801396593 hasConceptScore W2801396593C127313418 @default.
- W2801396593 hasConceptScore W2801396593C127413603 @default.
- W2801396593 hasConceptScore W2801396593C134306372 @default.
- W2801396593 hasConceptScore W2801396593C147168706 @default.
- W2801396593 hasConceptScore W2801396593C153180895 @default.
- W2801396593 hasConceptScore W2801396593C154945302 @default.
- W2801396593 hasConceptScore W2801396593C163294075 @default.
- W2801396593 hasConceptScore W2801396593C165205528 @default.
- W2801396593 hasConceptScore W2801396593C175551986 @default.
- W2801396593 hasConceptScore W2801396593C177148314 @default.
- W2801396593 hasConceptScore W2801396593C199978012 @default.
- W2801396593 hasConceptScore W2801396593C33923547 @default.
- W2801396593 hasConceptScore W2801396593C41008148 @default.
- W2801396593 hasConceptScore W2801396593C50644808 @default.
- W2801396593 hasConceptScore W2801396593C99498987 @default.
- W2801396593 hasFunder F4320321001 @default.
- W2801396593 hasLocation W28013965931 @default.
- W2801396593 hasLocation W28013965932 @default.
- W2801396593 hasOpenAccess W2801396593 @default.
- W2801396593 hasPrimaryLocation W28013965931 @default.
- W2801396593 hasRelatedWork W2159052453 @default.
- W2801396593 hasRelatedWork W2566616303 @default.
- W2801396593 hasRelatedWork W2734887215 @default.
- W2801396593 hasRelatedWork W2752972570 @default.
- W2801396593 hasRelatedWork W2803255133 @default.
- W2801396593 hasRelatedWork W2909431601 @default.
- W2801396593 hasRelatedWork W3013693939 @default.
- W2801396593 hasRelatedWork W3131327266 @default.
- W2801396593 hasRelatedWork W4294770367 @default.
- W2801396593 hasRelatedWork W4297051394 @default.
- W2801396593 hasVolume "77" @default.