Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801443642> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W2801443642 endingPage "88" @default.
- W2801443642 startingPage "78" @default.
- W2801443642 abstract "With the explosive growth of the Internet online texts, we could nowadays easily collect a large amount of labeled training data from different source domains. However, a basic assumption in building statistical machine learning models for sentiment analysis is that the training and test data must be drawn from the same distribution. Directly training a statistical model usually results in poor performance, when the training and test data have different distributions. Faced with the massive labeled data from different domains, it is therefore important to identify the source-domain training instances that are closely relevant to the target domain, and make better use of them. In this work, we propose a new approach, called multiclustering logistic approximation (MLA), to address this problem. In MLA, we adapt the source-domain training data to the target domain via a framework of multiclustering logistic approximation. Experimental results demonstrate that MLA has significant advantages over the state-of-the-art instance adaptation methods, especially in the scenario of multidistributional training data." @default.
- W2801443642 created "2018-05-17" @default.
- W2801443642 creator A5024215845 @default.
- W2801443642 creator A5035534911 @default.
- W2801443642 creator A5084990301 @default.
- W2801443642 date "2018-01-01" @default.
- W2801443642 modified "2023-10-18" @default.
- W2801443642 title "Instance-based Domain Adaptation via Multiclustering Logistic Approximation" @default.
- W2801443642 cites W1604005662 @default.
- W2801443642 cites W1966026565 @default.
- W2801443642 cites W2005422315 @default.
- W2801443642 cites W2032536435 @default.
- W2801443642 cites W2034368206 @default.
- W2801443642 cites W2055103902 @default.
- W2801443642 cites W2114686809 @default.
- W2801443642 cites W2139122730 @default.
- W2801443642 cites W2165698076 @default.
- W2801443642 cites W2306941105 @default.
- W2801443642 doi "https://doi.org/10.1109/mis.2018.012001555" @default.
- W2801443642 hasPublicationYear "2018" @default.
- W2801443642 type Work @default.
- W2801443642 sameAs 2801443642 @default.
- W2801443642 citedByCount "22" @default.
- W2801443642 countsByYear W28014436422019 @default.
- W2801443642 countsByYear W28014436422020 @default.
- W2801443642 countsByYear W28014436422021 @default.
- W2801443642 countsByYear W28014436422022 @default.
- W2801443642 countsByYear W28014436422023 @default.
- W2801443642 crossrefType "journal-article" @default.
- W2801443642 hasAuthorship W2801443642A5024215845 @default.
- W2801443642 hasAuthorship W2801443642A5035534911 @default.
- W2801443642 hasAuthorship W2801443642A5084990301 @default.
- W2801443642 hasConcept C110875604 @default.
- W2801443642 hasConcept C119857082 @default.
- W2801443642 hasConcept C120665830 @default.
- W2801443642 hasConcept C121332964 @default.
- W2801443642 hasConcept C124101348 @default.
- W2801443642 hasConcept C134306372 @default.
- W2801443642 hasConcept C136764020 @default.
- W2801443642 hasConcept C139807058 @default.
- W2801443642 hasConcept C153294291 @default.
- W2801443642 hasConcept C154945302 @default.
- W2801443642 hasConcept C16910744 @default.
- W2801443642 hasConcept C199360897 @default.
- W2801443642 hasConcept C2776434776 @default.
- W2801443642 hasConcept C2777211547 @default.
- W2801443642 hasConcept C33923547 @default.
- W2801443642 hasConcept C36503486 @default.
- W2801443642 hasConcept C41008148 @default.
- W2801443642 hasConcept C51632099 @default.
- W2801443642 hasConcept C95623464 @default.
- W2801443642 hasConceptScore W2801443642C110875604 @default.
- W2801443642 hasConceptScore W2801443642C119857082 @default.
- W2801443642 hasConceptScore W2801443642C120665830 @default.
- W2801443642 hasConceptScore W2801443642C121332964 @default.
- W2801443642 hasConceptScore W2801443642C124101348 @default.
- W2801443642 hasConceptScore W2801443642C134306372 @default.
- W2801443642 hasConceptScore W2801443642C136764020 @default.
- W2801443642 hasConceptScore W2801443642C139807058 @default.
- W2801443642 hasConceptScore W2801443642C153294291 @default.
- W2801443642 hasConceptScore W2801443642C154945302 @default.
- W2801443642 hasConceptScore W2801443642C16910744 @default.
- W2801443642 hasConceptScore W2801443642C199360897 @default.
- W2801443642 hasConceptScore W2801443642C2776434776 @default.
- W2801443642 hasConceptScore W2801443642C2777211547 @default.
- W2801443642 hasConceptScore W2801443642C33923547 @default.
- W2801443642 hasConceptScore W2801443642C36503486 @default.
- W2801443642 hasConceptScore W2801443642C41008148 @default.
- W2801443642 hasConceptScore W2801443642C51632099 @default.
- W2801443642 hasConceptScore W2801443642C95623464 @default.
- W2801443642 hasIssue "1" @default.
- W2801443642 hasLocation W28014436421 @default.
- W2801443642 hasOpenAccess W2801443642 @default.
- W2801443642 hasPrimaryLocation W28014436421 @default.
- W2801443642 hasRelatedWork W2250728308 @default.
- W2801443642 hasRelatedWork W2955455867 @default.
- W2801443642 hasRelatedWork W2997645659 @default.
- W2801443642 hasRelatedWork W3156096827 @default.
- W2801443642 hasRelatedWork W3180787869 @default.
- W2801443642 hasRelatedWork W3203792196 @default.
- W2801443642 hasRelatedWork W4295929828 @default.
- W2801443642 hasRelatedWork W4300172004 @default.
- W2801443642 hasRelatedWork W4321649381 @default.
- W2801443642 hasRelatedWork W4375869316 @default.
- W2801443642 hasVolume "33" @default.
- W2801443642 isParatext "false" @default.
- W2801443642 isRetracted "false" @default.
- W2801443642 magId "2801443642" @default.
- W2801443642 workType "article" @default.