Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801476319> ?p ?o ?g. }
- W2801476319 endingPage "241726" @default.
- W2801476319 startingPage "241726" @default.
- W2801476319 abstract "Many proteins are regulated by dynamic allostery wherein regulator-induced changes in structure are comparable with thermal fluctuations. Consequently, understanding their mechanisms requires assessment of relationships between and within conformational ensembles of different states. Here we show how machine learning based approaches can be used to simplify this high-dimensional data mining task and also obtain mechanistic insight. In particular, we use these approaches to investigate two fundamental questions in dynamic allostery. First, how do regulators modify inter-site correlations in conformational fluctuations (Cij)? Second, how are regulator-induced shifts in conformational ensembles at two different sites in a protein related to each other? We address these questions in the context of the human protein tyrosine phosphatase 1E's PDZ2 domain, which is a model protein for studying dynamic allostery. We use molecular dynamics to generate conformational ensembles of the PDZ2 domain in both the regulator-bound and regulator-free states. The employed protocol reproduces methyl deuterium order parameters from NMR. Results from unsupervised clustering of Cij combined with flow analyses of weighted graphs of Cij show that regulator binding significantly alters the global signaling network in the protein; however, not by altering the spatial arrangement of strongly interacting amino acid clusters but by modifying the connectivity between clusters. Additionally, we find that regulator-induced shifts in conformational ensembles, which we evaluate by repartitioning ensembles using supervised learning, are, in fact, correlated. This correlation Δij is less extensive compared to Cij, but in contrast to Cij, Δij depends inversely on the distance from the regulator binding site. Assuming that Δij is an indicator of the transduction of the regulatory signal leads to the conclusion that the regulatory signal weakens with distance from the regulatory site. Overall, this work provides new approaches to analyze high-dimensional molecular simulation data and also presents applications that yield new insight into dynamic allostery." @default.
- W2801476319 created "2018-05-17" @default.
- W2801476319 creator A5002987852 @default.
- W2801476319 creator A5004495836 @default.
- W2801476319 creator A5027761662 @default.
- W2801476319 date "2018-06-28" @default.
- W2801476319 modified "2023-10-12" @default.
- W2801476319 title "Machine learning approaches to evaluate correlation patterns in allosteric signaling: A case study of the PDZ2 domain" @default.
- W2801476319 cites W1563088657 @default.
- W2801476319 cites W1592833489 @default.
- W2801476319 cites W1964439982 @default.
- W2801476319 cites W1966078827 @default.
- W2801476319 cites W1971575413 @default.
- W2801476319 cites W1982874561 @default.
- W2801476319 cites W1986743126 @default.
- W2801476319 cites W1990374415 @default.
- W2801476319 cites W1990622714 @default.
- W2801476319 cites W1991794210 @default.
- W2801476319 cites W1992170964 @default.
- W2801476319 cites W2003412353 @default.
- W2801476319 cites W2007154098 @default.
- W2801476319 cites W2009203175 @default.
- W2801476319 cites W2014252415 @default.
- W2801476319 cites W2018262140 @default.
- W2801476319 cites W2022402563 @default.
- W2801476319 cites W2022484653 @default.
- W2801476319 cites W2025717854 @default.
- W2801476319 cites W2026418335 @default.
- W2801476319 cites W2026724593 @default.
- W2801476319 cites W2029118067 @default.
- W2801476319 cites W2031583623 @default.
- W2801476319 cites W2041638382 @default.
- W2801476319 cites W2048822589 @default.
- W2801476319 cites W2049475242 @default.
- W2801476319 cites W2056650602 @default.
- W2801476319 cites W2059013803 @default.
- W2801476319 cites W2059508494 @default.
- W2801476319 cites W2063530729 @default.
- W2801476319 cites W2067174909 @default.
- W2801476319 cites W2068573355 @default.
- W2801476319 cites W2071167128 @default.
- W2801476319 cites W2074129172 @default.
- W2801476319 cites W2079657771 @default.
- W2801476319 cites W2081693079 @default.
- W2801476319 cites W2088239473 @default.
- W2801476319 cites W2092591319 @default.
- W2801476319 cites W2093174095 @default.
- W2801476319 cites W2093951664 @default.
- W2801476319 cites W2101414808 @default.
- W2801476319 cites W2103388411 @default.
- W2801476319 cites W2103945336 @default.
- W2801476319 cites W2105772796 @default.
- W2801476319 cites W2115152262 @default.
- W2801476319 cites W2119728532 @default.
- W2801476319 cites W2127325055 @default.
- W2801476319 cites W2142595184 @default.
- W2801476319 cites W2161605421 @default.
- W2801476319 cites W2165232124 @default.
- W2801476319 cites W2165565773 @default.
- W2801476319 cites W2168798454 @default.
- W2801476319 cites W2169528473 @default.
- W2801476319 cites W2170033348 @default.
- W2801476319 cites W2177508090 @default.
- W2801476319 cites W2283818235 @default.
- W2801476319 cites W2317028100 @default.
- W2801476319 cites W2325873319 @default.
- W2801476319 cites W2333360454 @default.
- W2801476319 cites W2537853126 @default.
- W2801476319 cites W2885134480 @default.
- W2801476319 cites W3017082821 @default.
- W2801476319 cites W4239510810 @default.
- W2801476319 doi "https://doi.org/10.1063/1.5022469" @default.
- W2801476319 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29960337" @default.
- W2801476319 hasPublicationYear "2018" @default.
- W2801476319 type Work @default.
- W2801476319 sameAs 2801476319 @default.
- W2801476319 citedByCount "15" @default.
- W2801476319 countsByYear W28014763192018 @default.
- W2801476319 countsByYear W28014763192019 @default.
- W2801476319 countsByYear W28014763192020 @default.
- W2801476319 countsByYear W28014763192021 @default.
- W2801476319 countsByYear W28014763192023 @default.
- W2801476319 crossrefType "journal-article" @default.
- W2801476319 hasAuthorship W2801476319A5002987852 @default.
- W2801476319 hasAuthorship W2801476319A5004495836 @default.
- W2801476319 hasAuthorship W2801476319A5027761662 @default.
- W2801476319 hasBestOaLocation W28014763191 @default.
- W2801476319 hasConcept C104317684 @default.
- W2801476319 hasConcept C119857082 @default.
- W2801476319 hasConcept C12554922 @default.
- W2801476319 hasConcept C151730666 @default.
- W2801476319 hasConcept C154945302 @default.
- W2801476319 hasConcept C166342909 @default.
- W2801476319 hasConcept C181199279 @default.
- W2801476319 hasConcept C185592680 @default.
- W2801476319 hasConcept C186060115 @default.
- W2801476319 hasConcept C2777936996 @default.
- W2801476319 hasConcept C2779343474 @default.