Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801493395> ?p ?o ?g. }
- W2801493395 endingPage "1600" @default.
- W2801493395 startingPage "1571" @default.
- W2801493395 abstract "Abstract Approximately 11 years of reforecasts from NOAA’s Second-Generation Global Ensemble Forecast System Reforecast (GEFS/R) model are used to train a contiguous United States (CONUS)-wide gridded probabilistic prediction system for locally extreme precipitation. This system is developed primarily using the random forest (RF) algorithm. Locally extreme precipitation is quantified for 24-h precipitation accumulations in the framework of average recurrence intervals (ARIs), with two severity levels: 1- and 10-yr ARI exceedances. Forecasts are made from 0000 UTC forecast initializations for two 1200–1200 UTC periods: days 2 and 3, comprising, respectively, forecast hours 36–60 and 60–84. Separate models are trained for each of eight forecast regions and for each forecast lead time. GEFS/R predictors vary in space and time relative to the forecast point and include not only the quantitative precipitation forecast (QPF) output from the model, but also variables that characterize the meteorological regime, including winds, moisture, and instability. Numerous sensitivity experiments are performed to determine the effects of the inclusion or exclusion of different aspects of forecast information in the model predictors, the choice of statistical algorithm, and the effect of performing dimensionality reduction via principal component analysis as a preprocessing step. Overall, it is found that the machine learning (ML)-based forecasts add significant skill over exceedance forecasts produced from both the raw GEFS/R ensemble QPFs and from the European Centre for Medium-Range Weather Forecasts’ (ECMWF) global ensemble across almost all regions of the CONUS. ML-based forecasts are found to be underconfident, while raw ensemble forecasts are highly overconfident." @default.
- W2801493395 created "2018-05-17" @default.
- W2801493395 creator A5054267943 @default.
- W2801493395 creator A5080597419 @default.
- W2801493395 date "2018-05-01" @default.
- W2801493395 modified "2023-10-12" @default.
- W2801493395 title "Money Doesn't Grow on Trees, but Forecasts Do: Forecasting Extreme Precipitation with Random Forests" @default.
- W2801493395 cites W1482914888 @default.
- W2801493395 cites W1840338487 @default.
- W2801493395 cites W1848135947 @default.
- W2801493395 cites W1927553696 @default.
- W2801493395 cites W1951366072 @default.
- W2801493395 cites W1964028606 @default.
- W2801493395 cites W1966043936 @default.
- W2801493395 cites W1966784906 @default.
- W2801493395 cites W1969004359 @default.
- W2801493395 cites W1980674179 @default.
- W2801493395 cites W1984280422 @default.
- W2801493395 cites W1984324343 @default.
- W2801493395 cites W1990332665 @default.
- W2801493395 cites W1991021495 @default.
- W2801493395 cites W1997004127 @default.
- W2801493395 cites W2005900208 @default.
- W2801493395 cites W2010559748 @default.
- W2801493395 cites W2018997274 @default.
- W2801493395 cites W2026058014 @default.
- W2801493395 cites W2027049813 @default.
- W2801493395 cites W2027907803 @default.
- W2801493395 cites W2038707259 @default.
- W2801493395 cites W2047634553 @default.
- W2801493395 cites W2049854759 @default.
- W2801493395 cites W2050444773 @default.
- W2801493395 cites W2056132907 @default.
- W2801493395 cites W2060740085 @default.
- W2801493395 cites W2063309430 @default.
- W2801493395 cites W2070158856 @default.
- W2801493395 cites W2072708097 @default.
- W2801493395 cites W2077038911 @default.
- W2801493395 cites W2082843623 @default.
- W2801493395 cites W2085513379 @default.
- W2801493395 cites W2088362906 @default.
- W2801493395 cites W2091361900 @default.
- W2801493395 cites W2098711309 @default.
- W2801493395 cites W2099399987 @default.
- W2801493395 cites W2104484944 @default.
- W2801493395 cites W2114158393 @default.
- W2801493395 cites W2115658831 @default.
- W2801493395 cites W2119791647 @default.
- W2801493395 cites W2120069064 @default.
- W2801493395 cites W2122131226 @default.
- W2801493395 cites W2123534154 @default.
- W2801493395 cites W2128469217 @default.
- W2801493395 cites W2129032690 @default.
- W2801493395 cites W2130391335 @default.
- W2801493395 cites W2139047213 @default.
- W2801493395 cites W2141290483 @default.
- W2801493395 cites W2142267599 @default.
- W2801493395 cites W2144668858 @default.
- W2801493395 cites W2151545251 @default.
- W2801493395 cites W2151695040 @default.
- W2801493395 cites W2152323722 @default.
- W2801493395 cites W2153105681 @default.
- W2801493395 cites W2155027475 @default.
- W2801493395 cites W2156641543 @default.
- W2801493395 cites W2159358349 @default.
- W2801493395 cites W2162852329 @default.
- W2801493395 cites W2166084168 @default.
- W2801493395 cites W2170766202 @default.
- W2801493395 cites W2171224806 @default.
- W2801493395 cites W2172654556 @default.
- W2801493395 cites W2175808424 @default.
- W2801493395 cites W2175926006 @default.
- W2801493395 cites W2178952774 @default.
- W2801493395 cites W2178985716 @default.
- W2801493395 cites W2204227166 @default.
- W2801493395 cites W2230938517 @default.
- W2801493395 cites W2255717465 @default.
- W2801493395 cites W2296521892 @default.
- W2801493395 cites W2463576927 @default.
- W2801493395 cites W2505827166 @default.
- W2801493395 cites W2578294171 @default.
- W2801493395 cites W2601923741 @default.
- W2801493395 cites W2610569661 @default.
- W2801493395 cites W2743153755 @default.
- W2801493395 cites W2763740452 @default.
- W2801493395 cites W2911964244 @default.
- W2801493395 cites W4236137412 @default.
- W2801493395 cites W4239510810 @default.
- W2801493395 cites W4248455063 @default.
- W2801493395 doi "https://doi.org/10.1175/mwr-d-17-0250.1" @default.
- W2801493395 hasPublicationYear "2018" @default.
- W2801493395 type Work @default.
- W2801493395 sameAs 2801493395 @default.
- W2801493395 citedByCount "78" @default.
- W2801493395 countsByYear W28014933952018 @default.
- W2801493395 countsByYear W28014933952019 @default.
- W2801493395 countsByYear W28014933952020 @default.
- W2801493395 countsByYear W28014933952021 @default.