Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801494682> ?p ?o ?g. }
Showing items 1 to 85 of
85
with 100 items per page.
- W2801494682 endingPage "730" @default.
- W2801494682 startingPage "730" @default.
- W2801494682 abstract "We present a novel inversion approach using a neural network to locate subsurface targets and evaluate their backscattering properties from ground penetrating radar (GPR) data. The presented inversion strategy constructs an adaptive linear element (ADALINE) neural network, whose configuration is related to the unknown properties of the targets. The GPR data is reconstructed (compression) to fit the structure of the neural network. The constructed neural network works with a supervised training mode, where a series of primary functions derived from the GPR signal model are used as the input, and the reconstructed GPR data is the expected/target output. In this way, inverting the GPR data is the equivalent of training the network. The back-propagation (BP) algorithm is employed for the training of the neural network. The numerical experiments show that the proposed approach can return an exact estimation for the target’s location. Under sparse conditions, an inverted backscattering intensity with a relative error lower than 3% was achieved, whereas for the multi-dominating point scenario, a higher error rate was observed. Finally, the limitations and further developments for the inverting GPR data with the neural network are discussed." @default.
- W2801494682 created "2018-05-17" @default.
- W2801494682 creator A5004835193 @default.
- W2801494682 creator A5026494699 @default.
- W2801494682 creator A5057402960 @default.
- W2801494682 date "2018-05-09" @default.
- W2801494682 modified "2023-09-29" @default.
- W2801494682 title "Inversion of Ground Penetrating Radar Data Based on Neural Networks" @default.
- W2801494682 cites W1971320984 @default.
- W2801494682 cites W2023497560 @default.
- W2801494682 cites W2036261140 @default.
- W2801494682 cites W2050993314 @default.
- W2801494682 cites W2073046487 @default.
- W2801494682 cites W2074446380 @default.
- W2801494682 cites W2079507452 @default.
- W2801494682 cites W2106290837 @default.
- W2801494682 cites W2116424792 @default.
- W2801494682 cites W2119269309 @default.
- W2801494682 cites W2130976145 @default.
- W2801494682 cites W2140277740 @default.
- W2801494682 cites W2171867284 @default.
- W2801494682 cites W2394919951 @default.
- W2801494682 cites W2518909974 @default.
- W2801494682 cites W2794881565 @default.
- W2801494682 doi "https://doi.org/10.3390/rs10050730" @default.
- W2801494682 hasPublicationYear "2018" @default.
- W2801494682 type Work @default.
- W2801494682 sameAs 2801494682 @default.
- W2801494682 citedByCount "22" @default.
- W2801494682 countsByYear W28014946822019 @default.
- W2801494682 countsByYear W28014946822020 @default.
- W2801494682 countsByYear W28014946822021 @default.
- W2801494682 countsByYear W28014946822022 @default.
- W2801494682 countsByYear W28014946822023 @default.
- W2801494682 crossrefType "journal-article" @default.
- W2801494682 hasAuthorship W2801494682A5004835193 @default.
- W2801494682 hasAuthorship W2801494682A5026494699 @default.
- W2801494682 hasAuthorship W2801494682A5057402960 @default.
- W2801494682 hasBestOaLocation W28014946821 @default.
- W2801494682 hasConcept C11413529 @default.
- W2801494682 hasConcept C127313418 @default.
- W2801494682 hasConcept C154945302 @default.
- W2801494682 hasConcept C165205528 @default.
- W2801494682 hasConcept C1893757 @default.
- W2801494682 hasConcept C41008148 @default.
- W2801494682 hasConcept C50644808 @default.
- W2801494682 hasConcept C554190296 @default.
- W2801494682 hasConcept C71813955 @default.
- W2801494682 hasConcept C76155785 @default.
- W2801494682 hasConcept C77928131 @default.
- W2801494682 hasConceptScore W2801494682C11413529 @default.
- W2801494682 hasConceptScore W2801494682C127313418 @default.
- W2801494682 hasConceptScore W2801494682C154945302 @default.
- W2801494682 hasConceptScore W2801494682C165205528 @default.
- W2801494682 hasConceptScore W2801494682C1893757 @default.
- W2801494682 hasConceptScore W2801494682C41008148 @default.
- W2801494682 hasConceptScore W2801494682C50644808 @default.
- W2801494682 hasConceptScore W2801494682C554190296 @default.
- W2801494682 hasConceptScore W2801494682C71813955 @default.
- W2801494682 hasConceptScore W2801494682C76155785 @default.
- W2801494682 hasConceptScore W2801494682C77928131 @default.
- W2801494682 hasFunder F4320321001 @default.
- W2801494682 hasIssue "5" @default.
- W2801494682 hasLocation W28014946821 @default.
- W2801494682 hasLocation W28014946822 @default.
- W2801494682 hasLocation W28014946823 @default.
- W2801494682 hasOpenAccess W2801494682 @default.
- W2801494682 hasPrimaryLocation W28014946821 @default.
- W2801494682 hasRelatedWork W1972504504 @default.
- W2801494682 hasRelatedWork W2019201695 @default.
- W2801494682 hasRelatedWork W2144334137 @default.
- W2801494682 hasRelatedWork W2347664876 @default.
- W2801494682 hasRelatedWork W2366132044 @default.
- W2801494682 hasRelatedWork W2368573498 @default.
- W2801494682 hasRelatedWork W2790321534 @default.
- W2801494682 hasRelatedWork W2950931974 @default.
- W2801494682 hasRelatedWork W3194081450 @default.
- W2801494682 hasRelatedWork W4313412807 @default.
- W2801494682 hasVolume "10" @default.
- W2801494682 isParatext "false" @default.
- W2801494682 isRetracted "false" @default.
- W2801494682 magId "2801494682" @default.
- W2801494682 workType "article" @default.