Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801498720> ?p ?o ?g. }
- W2801498720 endingPage "261" @default.
- W2801498720 startingPage "250" @default.
- W2801498720 abstract "Whenever the long term monitoring of a building is attempted it is likely that specific sensors or the whole monitoring system used may experience long-term failure therefore creating important gaps in one or more variables of special interest. These long gaps may not be addressed using simple linear interpolation. The option of only using the available data for descriptive statistics would produce results that are biased towards the season of measurement. In addition discarding the incomplete data represents a significant waste of time and effort in the research study. A work around to reduce the bias problem is to predict the missing data from other measured variables using machine-learning techniques. Some questions that follow are: How much data is necessary to be able to train a regression model? What is the expected error of such prediction? What is the best model for such a task? This paper addresses the problem of completing a data set for the interior temperatures inside a passive house using different monitored predictors such as exterior temperature, humidity, wind speed, visibility, pressure and electrical energy use inside the building. Two regression models, multiple linear regression and random forest are compared using learning curves for the training and testing sets for visualizing the so-called bias-variance trade off. The learning curves help to answer the question of optimal sample size for training, model selection and expected error. Finally, descriptive statistics such as median, maximum, minimum, and room temperature averages are presented before and after completing the data sets." @default.
- W2801498720 created "2018-05-17" @default.
- W2801498720 creator A5014847374 @default.
- W2801498720 creator A5026419769 @default.
- W2801498720 creator A5068130955 @default.
- W2801498720 date "2018-06-01" @default.
- W2801498720 modified "2023-10-14" @default.
- W2801498720 title "Reconstruction of the indoor temperature dataset of a house using data driven models for performance evaluation" @default.
- W2801498720 cites W1979841315 @default.
- W2801498720 cites W1996049394 @default.
- W2801498720 cites W1996185304 @default.
- W2801498720 cites W2005289033 @default.
- W2801498720 cites W2015905001 @default.
- W2801498720 cites W2021332116 @default.
- W2801498720 cites W2027455871 @default.
- W2801498720 cites W2029889874 @default.
- W2801498720 cites W2029912855 @default.
- W2801498720 cites W2029952128 @default.
- W2801498720 cites W2034193499 @default.
- W2801498720 cites W2035174181 @default.
- W2801498720 cites W2038192679 @default.
- W2801498720 cites W2044033979 @default.
- W2801498720 cites W2047143310 @default.
- W2801498720 cites W2049877636 @default.
- W2801498720 cites W2051607409 @default.
- W2801498720 cites W2058890811 @default.
- W2801498720 cites W2060587539 @default.
- W2801498720 cites W2064469609 @default.
- W2801498720 cites W2069301212 @default.
- W2801498720 cites W2075491568 @default.
- W2801498720 cites W2084963110 @default.
- W2801498720 cites W2088886297 @default.
- W2801498720 cites W2105394667 @default.
- W2801498720 cites W2117354526 @default.
- W2801498720 cites W2129959438 @default.
- W2801498720 cites W2140973364 @default.
- W2801498720 cites W2152365410 @default.
- W2801498720 cites W2156302255 @default.
- W2801498720 cites W2161257182 @default.
- W2801498720 cites W2302517508 @default.
- W2801498720 cites W2314153399 @default.
- W2801498720 cites W2467099554 @default.
- W2801498720 cites W2585502432 @default.
- W2801498720 cites W2615843269 @default.
- W2801498720 doi "https://doi.org/10.1016/j.buildenv.2018.04.035" @default.
- W2801498720 hasPublicationYear "2018" @default.
- W2801498720 type Work @default.
- W2801498720 sameAs 2801498720 @default.
- W2801498720 citedByCount "15" @default.
- W2801498720 countsByYear W28014987202019 @default.
- W2801498720 countsByYear W28014987202020 @default.
- W2801498720 countsByYear W28014987202021 @default.
- W2801498720 countsByYear W28014987202022 @default.
- W2801498720 countsByYear W28014987202023 @default.
- W2801498720 crossrefType "journal-article" @default.
- W2801498720 hasAuthorship W2801498720A5014847374 @default.
- W2801498720 hasAuthorship W2801498720A5026419769 @default.
- W2801498720 hasAuthorship W2801498720A5068130955 @default.
- W2801498720 hasConcept C105795698 @default.
- W2801498720 hasConcept C119857082 @default.
- W2801498720 hasConcept C121332964 @default.
- W2801498720 hasConcept C123403432 @default.
- W2801498720 hasConcept C139945424 @default.
- W2801498720 hasConcept C152877465 @default.
- W2801498720 hasConcept C153180895 @default.
- W2801498720 hasConcept C153294291 @default.
- W2801498720 hasConcept C154945302 @default.
- W2801498720 hasConcept C161067210 @default.
- W2801498720 hasConcept C169258074 @default.
- W2801498720 hasConcept C171836373 @default.
- W2801498720 hasConcept C177264268 @default.
- W2801498720 hasConcept C185592680 @default.
- W2801498720 hasConcept C198531522 @default.
- W2801498720 hasConcept C199360897 @default.
- W2801498720 hasConcept C205649164 @default.
- W2801498720 hasConcept C33923547 @default.
- W2801498720 hasConcept C41008148 @default.
- W2801498720 hasConcept C43617362 @default.
- W2801498720 hasConcept C48921125 @default.
- W2801498720 hasConcept C58489278 @default.
- W2801498720 hasConcept C61797465 @default.
- W2801498720 hasConcept C62520636 @default.
- W2801498720 hasConcept C83546350 @default.
- W2801498720 hasConcept C9357733 @default.
- W2801498720 hasConceptScore W2801498720C105795698 @default.
- W2801498720 hasConceptScore W2801498720C119857082 @default.
- W2801498720 hasConceptScore W2801498720C121332964 @default.
- W2801498720 hasConceptScore W2801498720C123403432 @default.
- W2801498720 hasConceptScore W2801498720C139945424 @default.
- W2801498720 hasConceptScore W2801498720C152877465 @default.
- W2801498720 hasConceptScore W2801498720C153180895 @default.
- W2801498720 hasConceptScore W2801498720C153294291 @default.
- W2801498720 hasConceptScore W2801498720C154945302 @default.
- W2801498720 hasConceptScore W2801498720C161067210 @default.
- W2801498720 hasConceptScore W2801498720C169258074 @default.
- W2801498720 hasConceptScore W2801498720C171836373 @default.
- W2801498720 hasConceptScore W2801498720C177264268 @default.
- W2801498720 hasConceptScore W2801498720C185592680 @default.