Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801615077> ?p ?o ?g. }
- W2801615077 endingPage "1116" @default.
- W2801615077 startingPage "1106" @default.
- W2801615077 abstract "Ever since the first molecular mechanics computer simulations of biological molecules became possible, there has been the dream to study all complex biological phenomena in silico, simply bypassing the enormous experimental challenges and their associated costs. For this, two inherent requirements need to be met: First, the time scales achievable in simulations must reach up to the millisecond range and even longer. Second, the computational model must accurately reproduce what is measured experimentally. Despite some recent successes, the general consensus in the field to date has been that neither of these conditions have yet been met and that the dream will be realized, if at all, only in the distant future. In this Account, we show that this view is wrong; instead, we are actually in the middle of the in silico molecular dynamics (MD) revolution, which is reshaping how we think about protein function. The example explored in this Account is a recent advance in the field of membrane-active peptides (MAPs). MD simulations have succeeded in accurately capturing the process of peptide binding, folding, and partitioning into lipid bilayers as well as revealing how channels form spontaneously from polypeptide fragments and conduct ionic and other cargo across membranes, all at atomic resolution. These game-changing advances have been made possible by a combination of steadily advancing computational power, more efficient algorithms and techniques, clever accelerated sampling schemes, and thorough experimental verifications. The great advantage of MD is the spatial and temporal resolution, directly providing a molecular movie of a protein undergoing folding and cycling through a functional process. This is especially important for proteins with transitory functional states, such as pore-forming MAPs. Recent successes are demonstrated here for the large class of antimicrobial peptides (AMPs). These short peptides are an essential part of the nonadaptive immune system for many organisms, ubiquitous in nature, and of particular interest to the pharmaceutical industry in the age of rising bacterial resistance to conventional antibiotic treatments. Unlike integral membrane proteins, AMPs are sufficiently small to allow converged sampling with the unbiased high-temperature sampling methodology outlined here and are relatively easy to handle experimentally. At the same time, AMPs exhibit a wealth of complex and poorly understood interactions with lipid bilayers, which allow not only tuning and validation of the simulation methodology but also advancement of our knowledge of protein-lipid interactions at a fundamental level. Space constraints limit our discussion to AMPs, but the MD methodologies outlined here can be applied to all phenomena involving peptides in membranes, including cell-penetrating peptides, signaling peptides, viral channel forming peptides, and fusion peptides, as well as ab initio membrane protein folding and assembly. For these systems, the promise of MD simulations to predict the structure of channels and to provide complete-atomic-detail trajectories of the mechanistic processes underlying their biological functions appears to rapidly become a reality. The current challenge is to design joint experimental and computational benchmarks to verify and tune MD force fields. With this, MD will finally fulfill its promise to become an inexpensive, powerful, and easy-to-use tool providing atomic-detail insights to researchers as part of their investigations into membrane biophysics and beyond." @default.
- W2801615077 created "2018-05-17" @default.
- W2801615077 creator A5053464336 @default.
- W2801615077 creator A5058487565 @default.
- W2801615077 date "2018-04-18" @default.
- W2801615077 modified "2023-10-17" @default.
- W2801615077 title "Molecular Dynamics Simulations Are Redefining Our View of Peptides Interacting with Biological Membranes" @default.
- W2801615077 cites W1974078504 @default.
- W2801615077 cites W1987288531 @default.
- W2801615077 cites W1987614291 @default.
- W2801615077 cites W1996478334 @default.
- W2801615077 cites W1997332996 @default.
- W2801615077 cites W1999133834 @default.
- W2801615077 cites W2003897459 @default.
- W2801615077 cites W2004933791 @default.
- W2801615077 cites W2007446604 @default.
- W2801615077 cites W2008968082 @default.
- W2801615077 cites W2013133956 @default.
- W2801615077 cites W2017177103 @default.
- W2801615077 cites W2022748695 @default.
- W2801615077 cites W2023256284 @default.
- W2801615077 cites W2032284161 @default.
- W2801615077 cites W2037919694 @default.
- W2801615077 cites W2039694750 @default.
- W2801615077 cites W2048496209 @default.
- W2801615077 cites W2055154674 @default.
- W2801615077 cites W2055154757 @default.
- W2801615077 cites W2065167623 @default.
- W2801615077 cites W2068659658 @default.
- W2801615077 cites W2073357661 @default.
- W2801615077 cites W2073564607 @default.
- W2801615077 cites W2079345332 @default.
- W2801615077 cites W2080165003 @default.
- W2801615077 cites W2085037255 @default.
- W2801615077 cites W2086747619 @default.
- W2801615077 cites W2094389762 @default.
- W2801615077 cites W2110670340 @default.
- W2801615077 cites W2118913742 @default.
- W2801615077 cites W2132662146 @default.
- W2801615077 cites W2133911253 @default.
- W2801615077 cites W2138613375 @default.
- W2801615077 cites W2147691794 @default.
- W2801615077 cites W2153654642 @default.
- W2801615077 cites W2157630661 @default.
- W2801615077 cites W2171695688 @default.
- W2801615077 cites W2175270296 @default.
- W2801615077 cites W2219480864 @default.
- W2801615077 cites W2282547022 @default.
- W2801615077 cites W2394638567 @default.
- W2801615077 cites W2484966226 @default.
- W2801615077 cites W2507728244 @default.
- W2801615077 cites W2552497246 @default.
- W2801615077 cites W2584836986 @default.
- W2801615077 cites W2607475497 @default.
- W2801615077 cites W2610314289 @default.
- W2801615077 cites W2735909856 @default.
- W2801615077 cites W2790898818 @default.
- W2801615077 cites W95860189 @default.
- W2801615077 doi "https://doi.org/10.1021/acs.accounts.7b00613" @default.
- W2801615077 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29667836" @default.
- W2801615077 hasPublicationYear "2018" @default.
- W2801615077 type Work @default.
- W2801615077 sameAs 2801615077 @default.
- W2801615077 citedByCount "90" @default.
- W2801615077 countsByYear W28016150772018 @default.
- W2801615077 countsByYear W28016150772019 @default.
- W2801615077 countsByYear W28016150772020 @default.
- W2801615077 countsByYear W28016150772021 @default.
- W2801615077 countsByYear W28016150772022 @default.
- W2801615077 countsByYear W28016150772023 @default.
- W2801615077 crossrefType "journal-article" @default.
- W2801615077 hasAuthorship W2801615077A5053464336 @default.
- W2801615077 hasAuthorship W2801615077A5058487565 @default.
- W2801615077 hasConcept C104317684 @default.
- W2801615077 hasConcept C10803110 @default.
- W2801615077 hasConcept C119599485 @default.
- W2801615077 hasConcept C121332964 @default.
- W2801615077 hasConcept C127413603 @default.
- W2801615077 hasConcept C1276947 @default.
- W2801615077 hasConcept C14036430 @default.
- W2801615077 hasConcept C147597530 @default.
- W2801615077 hasConcept C154945302 @default.
- W2801615077 hasConcept C171250308 @default.
- W2801615077 hasConcept C185592680 @default.
- W2801615077 hasConcept C192562407 @default.
- W2801615077 hasConcept C202444582 @default.
- W2801615077 hasConcept C2775905019 @default.
- W2801615077 hasConcept C2776545253 @default.
- W2801615077 hasConcept C33923547 @default.
- W2801615077 hasConcept C41008148 @default.
- W2801615077 hasConcept C55493867 @default.
- W2801615077 hasConcept C59593255 @default.
- W2801615077 hasConcept C60327585 @default.
- W2801615077 hasConcept C78458016 @default.
- W2801615077 hasConcept C86803240 @default.
- W2801615077 hasConcept C9652623 @default.
- W2801615077 hasConceptScore W2801615077C104317684 @default.
- W2801615077 hasConceptScore W2801615077C10803110 @default.