Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801684017> ?p ?o ?g. }
- W2801684017 endingPage "36" @default.
- W2801684017 startingPage "29" @default.
- W2801684017 abstract "Abstract. Aboveground biomass estimation (AGB) is essential in determining the environmental and economic values of mangrove forests. Biomass prediction models can be developed through integration of remote sensing, field data and statistical models. This study aims to assess and compare the biomass predictor potential of multispectral bands, vegetation indices and biophysical variables that can be derived from three optical satellite systems: the Sentinel-2 with 10 m, 20 m and 60 m resolution; RapidEye with 5m resolution and PlanetScope with 3m ground resolution. Field data for biomass were collected from a Rhizophoraceae-dominated mangrove forest in Masinloc, Zambales, Philippines where 30 test plots (1.2 ha) and 5 validation plots (0.2 ha) were established. Prior to the generation of indices, images from the three satellite systems were pre-processed using atmospheric correction tools in SNAP (Sentinel-2), ENVI (RapidEye) and python (PlanetScope). The major predictor bands tested are Blue, Green and Red, which are present in the three systems; and Red-edge band from Sentinel-2 and Rapideye. The tested vegetation index predictors are Normalized Differenced Vegetation Index (NDVI), Soil-adjusted Vegetation Index (SAVI), Green-NDVI (GNDVI), Simple Ratio (SR), and Red-edge Simple Ratio (SRre). The study generated prediction models through conventional linear regression and multivariate regression. Higher coefficient of determination (r2) values were obtained using multispectral band predictors for Sentinel-2 (r2 = 0.89) and Planetscope (r2 = 0.80); and vegetation indices for RapidEye (r2 = 0.92). Multivariate Adaptive Regression Spline (MARS) models performed better than the linear regression models with r2 ranging from 0.62 to 0.92. Based on the r2 and root-mean-square errors (RMSE’s), the best biomass prediction model per satellite were chosen and maps were generated. The accuracy of predicted biomass maps were high for both Sentinel-2 (r2 = 0.92) and RapidEye data (r2 = 0.91)." @default.
- W2801684017 created "2018-05-17" @default.
- W2801684017 creator A5000446052 @default.
- W2801684017 creator A5017010120 @default.
- W2801684017 creator A5043713201 @default.
- W2801684017 creator A5053296556 @default.
- W2801684017 creator A5056758379 @default.
- W2801684017 creator A5075350999 @default.
- W2801684017 creator A5080870781 @default.
- W2801684017 date "2018-04-23" @default.
- W2801684017 modified "2023-10-12" @default.
- W2801684017 title "ESTIMATION OF MANGROVE FOREST ABOVEGROUND BIOMASS USING MULTISPECTRAL BANDS, VEGETATION INDICES AND BIOPHYSICAL VARIABLES DERIVED FROM OPTICAL SATELLITE IMAGERIES: RAPIDEYE, PLANETSCOPE AND SENTINEL-2" @default.
- W2801684017 cites W1662323679 @default.
- W2801684017 cites W1974737477 @default.
- W2801684017 cites W2000613913 @default.
- W2801684017 cites W2060426168 @default.
- W2801684017 cites W2061168193 @default.
- W2801684017 cites W2068783739 @default.
- W2801684017 cites W2077033502 @default.
- W2801684017 cites W2089441588 @default.
- W2801684017 cites W2121028877 @default.
- W2801684017 cites W2122825721 @default.
- W2801684017 cites W2125498080 @default.
- W2801684017 cites W2136181038 @default.
- W2801684017 cites W2159961845 @default.
- W2801684017 cites W2182737433 @default.
- W2801684017 cites W2254707079 @default.
- W2801684017 cites W2414762761 @default.
- W2801684017 cites W2469675438 @default.
- W2801684017 cites W2492067459 @default.
- W2801684017 cites W2592618579 @default.
- W2801684017 cites W2768035654 @default.
- W2801684017 cites W3010621220 @default.
- W2801684017 doi "https://doi.org/10.5194/isprs-annals-iv-3-29-2018" @default.
- W2801684017 hasPublicationYear "2018" @default.
- W2801684017 type Work @default.
- W2801684017 sameAs 2801684017 @default.
- W2801684017 citedByCount "40" @default.
- W2801684017 countsByYear W28016840172019 @default.
- W2801684017 countsByYear W28016840172020 @default.
- W2801684017 countsByYear W28016840172021 @default.
- W2801684017 countsByYear W28016840172022 @default.
- W2801684017 countsByYear W28016840172023 @default.
- W2801684017 crossrefType "journal-article" @default.
- W2801684017 hasAuthorship W2801684017A5000446052 @default.
- W2801684017 hasAuthorship W2801684017A5017010120 @default.
- W2801684017 hasAuthorship W2801684017A5043713201 @default.
- W2801684017 hasAuthorship W2801684017A5053296556 @default.
- W2801684017 hasAuthorship W2801684017A5056758379 @default.
- W2801684017 hasAuthorship W2801684017A5075350999 @default.
- W2801684017 hasAuthorship W2801684017A5080870781 @default.
- W2801684017 hasBestOaLocation W28016840171 @default.
- W2801684017 hasConcept C115540264 @default.
- W2801684017 hasConcept C142724271 @default.
- W2801684017 hasConcept C1549246 @default.
- W2801684017 hasConcept C159078339 @default.
- W2801684017 hasConcept C173163844 @default.
- W2801684017 hasConcept C18903297 @default.
- W2801684017 hasConcept C205649164 @default.
- W2801684017 hasConcept C25989453 @default.
- W2801684017 hasConcept C2776133958 @default.
- W2801684017 hasConcept C2776388979 @default.
- W2801684017 hasConcept C39432304 @default.
- W2801684017 hasConcept C62649853 @default.
- W2801684017 hasConcept C71924100 @default.
- W2801684017 hasConcept C86803240 @default.
- W2801684017 hasConceptScore W2801684017C115540264 @default.
- W2801684017 hasConceptScore W2801684017C142724271 @default.
- W2801684017 hasConceptScore W2801684017C1549246 @default.
- W2801684017 hasConceptScore W2801684017C159078339 @default.
- W2801684017 hasConceptScore W2801684017C173163844 @default.
- W2801684017 hasConceptScore W2801684017C18903297 @default.
- W2801684017 hasConceptScore W2801684017C205649164 @default.
- W2801684017 hasConceptScore W2801684017C25989453 @default.
- W2801684017 hasConceptScore W2801684017C2776133958 @default.
- W2801684017 hasConceptScore W2801684017C2776388979 @default.
- W2801684017 hasConceptScore W2801684017C39432304 @default.
- W2801684017 hasConceptScore W2801684017C62649853 @default.
- W2801684017 hasConceptScore W2801684017C71924100 @default.
- W2801684017 hasConceptScore W2801684017C86803240 @default.
- W2801684017 hasLocation W28016840171 @default.
- W2801684017 hasLocation W28016840172 @default.
- W2801684017 hasLocation W28016840173 @default.
- W2801684017 hasOpenAccess W2801684017 @default.
- W2801684017 hasPrimaryLocation W28016840171 @default.
- W2801684017 hasRelatedWork W2135294089 @default.
- W2801684017 hasRelatedWork W2162498776 @default.
- W2801684017 hasRelatedWork W2582212497 @default.
- W2801684017 hasRelatedWork W2768326488 @default.
- W2801684017 hasRelatedWork W2901328217 @default.
- W2801684017 hasRelatedWork W2972875286 @default.
- W2801684017 hasRelatedWork W3027311362 @default.
- W2801684017 hasRelatedWork W3131311955 @default.
- W2801684017 hasRelatedWork W3153540583 @default.
- W2801684017 hasRelatedWork W2169663233 @default.
- W2801684017 hasVolume "IV-3" @default.
- W2801684017 isParatext "false" @default.
- W2801684017 isRetracted "false" @default.