Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801685102> ?p ?o ?g. }
- W2801685102 endingPage "1613" @default.
- W2801685102 startingPage "1594" @default.
- W2801685102 abstract "Further improvements in modern chemical kinetics mechanisms using laminar flame speeds require an understanding of the uncertainty and precision of the measurement and hence its limitations. From an inspection of the literature, it was found that laminar flame speed values of a basic methane–air mixture could depend on what measuring technique is employed. One way to reconcile these differences and understand the limitations of the various techniques is to quantify both their uncertainties and sensitivities to various parameters such as vessel size, detailed data reduction method, and igniter influences. To this end, a detailed experimental sensitivity analysis of a spherically expanding flame experiment and its contributing factors was performed. A simple mixture involving stoichiometric CH4–air was emphasized since there is still unreasonable uncertainty in its laminar flame speed and those measured values from spherical flames are consistently lower than those observed through the years with other methods by at least 1.7 cm/s. The effect of experimental vessel diameter on the inferred laminar flame speed for CH4 was also systematically explored in the same apparatus for the first time. It was found that ignition energy (when properly accounted for) and mixture preparation time were negligible factors. Smoothing experimental data was shown to decrease the fit uncertainty, but it can also lead to higher repeatability uncertainty. The best way to approach smoothing, if it must be done, is to incrementally increase the smoothing span so as not to over smooth data. Additionally, the derivative method was found to be sensitive to the maximum size of the flame radius for experiments in smaller vessels (). Smaller vessels also have more-limited data in the healthy region that is neither ignition nor confinement affected, and it is therefore suggested that extreme care be taken to ensure that the data used in extrapolation are unaffected. A new method of eliminating cutoff bias and sensitivity could be to compute all reasonable permutations of cutoffs and use a histogram for the flame speed. A complete uncertainty quantification was performed which showed that the largest source of uncertainty was the repeatability of the experiments (77% of the total uncertainty), and this result is largely influenced by the data reduction and analysis. Other important factors were the mixture and temperature uncertainties, where the latter, if not fixed or corrected to a single initial temperature, can contribute as much as 55% of the overall uncertainty. This paper confirms the general results observed in recent works in the literature while further quantifying and highlighting the experimental uncertainty in laminar flame speeds obtained from spherical flames in confined vessels. Based on the results herein, we believe that the unburned laminar flame speed for a stoichiometric CH4–air mixture at 1 atm and 298 K is 34.1 ± 0.3 cm/s." @default.
- W2801685102 created "2018-05-17" @default.
- W2801685102 creator A5004273811 @default.
- W2801685102 creator A5012962458 @default.
- W2801685102 creator A5059637559 @default.
- W2801685102 date "2018-04-16" @default.
- W2801685102 modified "2023-09-26" @default.
- W2801685102 title "An experimental study: laminar flame speed sensitivity from spherical flames in stoichiometric CH<sub>4</sub>–air mixtures" @default.
- W2801685102 cites W1485016971 @default.
- W2801685102 cites W1921935873 @default.
- W2801685102 cites W1963804323 @default.
- W2801685102 cites W1964739361 @default.
- W2801685102 cites W1968532007 @default.
- W2801685102 cites W1970781172 @default.
- W2801685102 cites W1972381533 @default.
- W2801685102 cites W1978094966 @default.
- W2801685102 cites W1978161048 @default.
- W2801685102 cites W1983382715 @default.
- W2801685102 cites W1984875658 @default.
- W2801685102 cites W1987669651 @default.
- W2801685102 cites W1989642158 @default.
- W2801685102 cites W1995169272 @default.
- W2801685102 cites W1995498213 @default.
- W2801685102 cites W1997231038 @default.
- W2801685102 cites W1998055899 @default.
- W2801685102 cites W1999467807 @default.
- W2801685102 cites W2000001460 @default.
- W2801685102 cites W2003779757 @default.
- W2801685102 cites W2005535756 @default.
- W2801685102 cites W2011532463 @default.
- W2801685102 cites W2014692885 @default.
- W2801685102 cites W2023344034 @default.
- W2801685102 cites W2023601913 @default.
- W2801685102 cites W2028614962 @default.
- W2801685102 cites W2029607117 @default.
- W2801685102 cites W2030027378 @default.
- W2801685102 cites W2037954612 @default.
- W2801685102 cites W2039044451 @default.
- W2801685102 cites W2042706261 @default.
- W2801685102 cites W2043259942 @default.
- W2801685102 cites W2058577562 @default.
- W2801685102 cites W2060146141 @default.
- W2801685102 cites W2067148519 @default.
- W2801685102 cites W2068080522 @default.
- W2801685102 cites W2068766861 @default.
- W2801685102 cites W2080771861 @default.
- W2801685102 cites W2083317944 @default.
- W2801685102 cites W2086016679 @default.
- W2801685102 cites W2096916634 @default.
- W2801685102 cites W2124592837 @default.
- W2801685102 cites W2142427650 @default.
- W2801685102 cites W2145023731 @default.
- W2801685102 cites W2149659501 @default.
- W2801685102 cites W2159596590 @default.
- W2801685102 cites W2207100715 @default.
- W2801685102 doi "https://doi.org/10.1080/00102202.2018.1460365" @default.
- W2801685102 hasPublicationYear "2018" @default.
- W2801685102 type Work @default.
- W2801685102 sameAs 2801685102 @default.
- W2801685102 citedByCount "24" @default.
- W2801685102 countsByYear W28016851022019 @default.
- W2801685102 countsByYear W28016851022020 @default.
- W2801685102 countsByYear W28016851022021 @default.
- W2801685102 countsByYear W28016851022022 @default.
- W2801685102 countsByYear W28016851022023 @default.
- W2801685102 crossrefType "journal-article" @default.
- W2801685102 hasAuthorship W2801685102A5004273811 @default.
- W2801685102 hasAuthorship W2801685102A5012962458 @default.
- W2801685102 hasAuthorship W2801685102A5059637559 @default.
- W2801685102 hasConcept C105795698 @default.
- W2801685102 hasConcept C105923489 @default.
- W2801685102 hasConcept C113196181 @default.
- W2801685102 hasConcept C121332964 @default.
- W2801685102 hasConcept C127413603 @default.
- W2801685102 hasConcept C154020017 @default.
- W2801685102 hasConcept C159063594 @default.
- W2801685102 hasConcept C178790620 @default.
- W2801685102 hasConcept C185592680 @default.
- W2801685102 hasConcept C192562407 @default.
- W2801685102 hasConcept C207870545 @default.
- W2801685102 hasConcept C21200559 @default.
- W2801685102 hasConcept C24326235 @default.
- W2801685102 hasConcept C2778269189 @default.
- W2801685102 hasConcept C33923547 @default.
- W2801685102 hasConcept C3770464 @default.
- W2801685102 hasConcept C43617362 @default.
- W2801685102 hasConcept C55477048 @default.
- W2801685102 hasConcept C57879066 @default.
- W2801685102 hasConcept C6506403 @default.
- W2801685102 hasConcept C76563973 @default.
- W2801685102 hasConcept C83104080 @default.
- W2801685102 hasConcept C97355855 @default.
- W2801685102 hasConceptScore W2801685102C105795698 @default.
- W2801685102 hasConceptScore W2801685102C105923489 @default.
- W2801685102 hasConceptScore W2801685102C113196181 @default.
- W2801685102 hasConceptScore W2801685102C121332964 @default.
- W2801685102 hasConceptScore W2801685102C127413603 @default.
- W2801685102 hasConceptScore W2801685102C154020017 @default.