Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801724901> ?p ?o ?g. }
- W2801724901 abstract "<p><strong>Abstract.</strong> The continuous decline in water quality in many regions is forcing a shift from quantity-based water resources management to a greater emphasis on water quality management. Water quality models can act as invaluable tools as they facilitate a conceptual understanding of processes affecting water quality and can be used to investigate the water quality consequences of management scenarios. In South Africa, the Water Quality Systems Assessment Model (WQSAM) was developed as a management-focussed water quality model that is relatively simple to be able to utilise the small amount of available observed data. Importantly, WQSAM explicitly links to systems (yield) models routinely used in water resources management in South Africa by using their flow output to drive water quality simulations. Although WQSAM has been shown to be able to represent the variability of water quality in South African rivers, its focus on management from a South African perspective limits its use to within southern African regions for which specific systems model setups exist. Facilitating the use of WQSAM within catchments outside of southern Africa and within catchments for which these systems model setups to not exist would require WQSAM to be able to link to a simple-to-use and internationally-applied systems model. One such systems model is the Water Evaluation and Planning (WEAP) model, which incorporates a rainfall-runoff component (natural hydrology), and reservoir storage, return flows and abstractions (systems modelling), but within which water quality modelling facilities are rudimentary. The aims of the current study were therefore to: (1) adapt the WQSAM model to be able to use as input the flow outputs of the WEAP model and; (2) provide an initial assessment of how successful this linkage was by application of the WEAP and WQSAM models to the Buffalo River for historical conditions; a small, semi-arid and impacted catchment in the Eastern Cape of South Africa. The simulations of the two models were compared to the available observed data, with the initial focus within WQSAM on a simulation of instream total dissolved solids (TDS) and nutrient concentrations. The WEAP model was able to adequately simulate flow in the Buffalo River catchment, with consideration of human inputs and outputs. WQSAM was adapted to successfully take as input the flow output of the WEAP model, and the simulations of nutrients by WQSAM provided a good representation of the variability of observed nutrient concentrations in the catchment. This study showed that the WQSAM model is able to accept flow inputs from the WEAP model, and that this approach is able to provide satisfactory estimates of both flow and water quality for a small, semi-arid and impacted catchment. It is hoped that this research will encourage the application of WQSAM to an increased number of catchments within southern Africa and beyond.</p>" @default.
- W2801724901 created "2018-05-17" @default.
- W2801724901 creator A5007731929 @default.
- W2801724901 creator A5089790882 @default.
- W2801724901 date "2018-04-16" @default.
- W2801724901 modified "2023-09-25" @default.
- W2801724901 title "Water quality modelling of an impacted semi-arid catchment using flow data from the WEAP model" @default.
- W2801724901 cites W1988845374 @default.
- W2801724901 cites W1990436032 @default.
- W2801724901 cites W1996853748 @default.
- W2801724901 cites W2014196416 @default.
- W2801724901 cites W2022315278 @default.
- W2801724901 cites W2028772431 @default.
- W2801724901 cites W2033904036 @default.
- W2801724901 cites W2038612063 @default.
- W2801724901 cites W2049831146 @default.
- W2801724901 cites W2061874038 @default.
- W2801724901 cites W206379727 @default.
- W2801724901 cites W2089136056 @default.
- W2801724901 cites W2124629174 @default.
- W2801724901 cites W2140218415 @default.
- W2801724901 cites W2143840625 @default.
- W2801724901 cites W2269109449 @default.
- W2801724901 cites W2292797730 @default.
- W2801724901 cites W2623316519 @default.
- W2801724901 cites W2739925091 @default.
- W2801724901 cites W2754415019 @default.
- W2801724901 cites W4231993243 @default.
- W2801724901 cites W822465430 @default.
- W2801724901 doi "https://doi.org/10.5194/piahs-377-25-2018" @default.
- W2801724901 hasPublicationYear "2018" @default.
- W2801724901 type Work @default.
- W2801724901 sameAs 2801724901 @default.
- W2801724901 citedByCount "2" @default.
- W2801724901 countsByYear W28017249012019 @default.
- W2801724901 countsByYear W28017249012020 @default.
- W2801724901 crossrefType "journal-article" @default.
- W2801724901 hasAuthorship W2801724901A5007731929 @default.
- W2801724901 hasAuthorship W2801724901A5089790882 @default.
- W2801724901 hasBestOaLocation W28017249011 @default.
- W2801724901 hasConcept C107826830 @default.
- W2801724901 hasConcept C126197015 @default.
- W2801724901 hasConcept C126645576 @default.
- W2801724901 hasConcept C127313418 @default.
- W2801724901 hasConcept C13606891 @default.
- W2801724901 hasConcept C153823671 @default.
- W2801724901 hasConcept C187320778 @default.
- W2801724901 hasConcept C18903297 @default.
- W2801724901 hasConcept C197115733 @default.
- W2801724901 hasConcept C205649164 @default.
- W2801724901 hasConcept C2780797713 @default.
- W2801724901 hasConcept C39432304 @default.
- W2801724901 hasConcept C41008148 @default.
- W2801724901 hasConcept C49204034 @default.
- W2801724901 hasConcept C50477045 @default.
- W2801724901 hasConcept C524765639 @default.
- W2801724901 hasConcept C53739315 @default.
- W2801724901 hasConcept C58640448 @default.
- W2801724901 hasConcept C76886044 @default.
- W2801724901 hasConcept C77088390 @default.
- W2801724901 hasConcept C86803240 @default.
- W2801724901 hasConceptScore W2801724901C107826830 @default.
- W2801724901 hasConceptScore W2801724901C126197015 @default.
- W2801724901 hasConceptScore W2801724901C126645576 @default.
- W2801724901 hasConceptScore W2801724901C127313418 @default.
- W2801724901 hasConceptScore W2801724901C13606891 @default.
- W2801724901 hasConceptScore W2801724901C153823671 @default.
- W2801724901 hasConceptScore W2801724901C187320778 @default.
- W2801724901 hasConceptScore W2801724901C18903297 @default.
- W2801724901 hasConceptScore W2801724901C197115733 @default.
- W2801724901 hasConceptScore W2801724901C205649164 @default.
- W2801724901 hasConceptScore W2801724901C2780797713 @default.
- W2801724901 hasConceptScore W2801724901C39432304 @default.
- W2801724901 hasConceptScore W2801724901C41008148 @default.
- W2801724901 hasConceptScore W2801724901C49204034 @default.
- W2801724901 hasConceptScore W2801724901C50477045 @default.
- W2801724901 hasConceptScore W2801724901C524765639 @default.
- W2801724901 hasConceptScore W2801724901C53739315 @default.
- W2801724901 hasConceptScore W2801724901C58640448 @default.
- W2801724901 hasConceptScore W2801724901C76886044 @default.
- W2801724901 hasConceptScore W2801724901C77088390 @default.
- W2801724901 hasConceptScore W2801724901C86803240 @default.
- W2801724901 hasLocation W28017249011 @default.
- W2801724901 hasLocation W28017249012 @default.
- W2801724901 hasOpenAccess W2801724901 @default.
- W2801724901 hasPrimaryLocation W28017249011 @default.
- W2801724901 hasRelatedWork W1520403169 @default.
- W2801724901 hasRelatedWork W1978968991 @default.
- W2801724901 hasRelatedWork W2037278347 @default.
- W2801724901 hasRelatedWork W2065046207 @default.
- W2801724901 hasRelatedWork W2098314970 @default.
- W2801724901 hasRelatedWork W2118146190 @default.
- W2801724901 hasRelatedWork W2123984994 @default.
- W2801724901 hasRelatedWork W2159370127 @default.
- W2801724901 hasRelatedWork W2230386452 @default.
- W2801724901 hasRelatedWork W2398190531 @default.
- W2801724901 hasRelatedWork W2468443573 @default.
- W2801724901 hasRelatedWork W2565430688 @default.
- W2801724901 hasRelatedWork W2618895899 @default.
- W2801724901 hasRelatedWork W2911291427 @default.