Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801728181> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W2801728181 endingPage "166" @default.
- W2801728181 startingPage "166" @default.
- W2801728181 abstract "For next place prediction, machine learning methods which incorporate contextual data are frequently used. However, previous studies often do not allow deriving generalizable methodological recommendations, since they use different datasets, methods for discretizing space, scales of prediction, prediction algorithms, and context data, and therefore lack comparability. Additionally, the cold start problem for new users is an issue. In this study, we predict next places based on one trajectory dataset but with systematically varying prediction algorithms, methods for space discretization, scales of prediction (based on a novel hierarchical approach), and incorporated context data. This allows to evaluate the relative influence of these factors on the overall prediction accuracy. Moreover, in order to tackle the cold start problem prevalent in recommender and prediction systems, we test the effect of training the predictor on all users instead of each individual one. We find that the prediction accuracy shows a varying dependency on the method of space discretization and the incorporated contextual factors at different spatial scales. Moreover, our user-independent approach reaches a prediction accuracy of around 75%, and is therefore an alternative to existing user-specific models. This research provides valuable insights into the individual and combinatory effects of model parameters and algorithms on the next place prediction accuracy. The results presented in this paper can be used to determine the influence of various contextual factors and to help researchers building more accurate prediction models. It is also a starting point for future work creating a comprehensive framework to guide the building of prediction models." @default.
- W2801728181 created "2018-05-17" @default.
- W2801728181 creator A5007585703 @default.
- W2801728181 creator A5067335405 @default.
- W2801728181 creator A5075405141 @default.
- W2801728181 creator A5080997069 @default.
- W2801728181 date "2018-04-27" @default.
- W2801728181 modified "2023-10-16" @default.
- W2801728181 title "Assessing the Influence of Spatio-Temporal Context for Next Place Prediction using Different Machine Learning Approaches" @default.
- W2801728181 cites W1875061881 @default.
- W2801728181 cites W1985147971 @default.
- W2801728181 cites W1987228002 @default.
- W2801728181 cites W1988456504 @default.
- W2801728181 cites W2056487692 @default.
- W2801728181 cites W2061491724 @default.
- W2801728181 cites W2069249448 @default.
- W2801728181 cites W2074206703 @default.
- W2801728181 cites W2093352090 @default.
- W2801728181 cites W2102592756 @default.
- W2801728181 cites W2106601118 @default.
- W2801728181 cites W2126194848 @default.
- W2801728181 cites W2138890315 @default.
- W2801728181 cites W2156886395 @default.
- W2801728181 cites W2171805028 @default.
- W2801728181 cites W2255845836 @default.
- W2801728181 cites W2286681216 @default.
- W2801728181 cites W2339065330 @default.
- W2801728181 cites W2441982354 @default.
- W2801728181 cites W2518091260 @default.
- W2801728181 cites W256129182 @default.
- W2801728181 cites W2566482757 @default.
- W2801728181 cites W2753291190 @default.
- W2801728181 cites W2911964244 @default.
- W2801728181 doi "https://doi.org/10.3390/ijgi7050166" @default.
- W2801728181 hasPublicationYear "2018" @default.
- W2801728181 type Work @default.
- W2801728181 sameAs 2801728181 @default.
- W2801728181 citedByCount "7" @default.
- W2801728181 countsByYear W28017281812019 @default.
- W2801728181 countsByYear W28017281812020 @default.
- W2801728181 countsByYear W28017281812023 @default.
- W2801728181 crossrefType "journal-article" @default.
- W2801728181 hasAuthorship W2801728181A5007585703 @default.
- W2801728181 hasAuthorship W2801728181A5067335405 @default.
- W2801728181 hasAuthorship W2801728181A5075405141 @default.
- W2801728181 hasAuthorship W2801728181A5080997069 @default.
- W2801728181 hasBestOaLocation W28017281811 @default.
- W2801728181 hasConcept C114614502 @default.
- W2801728181 hasConcept C119857082 @default.
- W2801728181 hasConcept C124101348 @default.
- W2801728181 hasConcept C134306372 @default.
- W2801728181 hasConcept C151730666 @default.
- W2801728181 hasConcept C154945302 @default.
- W2801728181 hasConcept C197947376 @default.
- W2801728181 hasConcept C2524010 @default.
- W2801728181 hasConcept C2779343474 @default.
- W2801728181 hasConcept C28719098 @default.
- W2801728181 hasConcept C33923547 @default.
- W2801728181 hasConcept C41008148 @default.
- W2801728181 hasConcept C45804977 @default.
- W2801728181 hasConcept C73000952 @default.
- W2801728181 hasConcept C86803240 @default.
- W2801728181 hasConceptScore W2801728181C114614502 @default.
- W2801728181 hasConceptScore W2801728181C119857082 @default.
- W2801728181 hasConceptScore W2801728181C124101348 @default.
- W2801728181 hasConceptScore W2801728181C134306372 @default.
- W2801728181 hasConceptScore W2801728181C151730666 @default.
- W2801728181 hasConceptScore W2801728181C154945302 @default.
- W2801728181 hasConceptScore W2801728181C197947376 @default.
- W2801728181 hasConceptScore W2801728181C2524010 @default.
- W2801728181 hasConceptScore W2801728181C2779343474 @default.
- W2801728181 hasConceptScore W2801728181C28719098 @default.
- W2801728181 hasConceptScore W2801728181C33923547 @default.
- W2801728181 hasConceptScore W2801728181C41008148 @default.
- W2801728181 hasConceptScore W2801728181C45804977 @default.
- W2801728181 hasConceptScore W2801728181C73000952 @default.
- W2801728181 hasConceptScore W2801728181C86803240 @default.
- W2801728181 hasIssue "5" @default.
- W2801728181 hasLocation W28017281811 @default.
- W2801728181 hasLocation W28017281812 @default.
- W2801728181 hasLocation W28017281813 @default.
- W2801728181 hasOpenAccess W2801728181 @default.
- W2801728181 hasPrimaryLocation W28017281811 @default.
- W2801728181 hasRelatedWork W1540102124 @default.
- W2801728181 hasRelatedWork W2341610571 @default.
- W2801728181 hasRelatedWork W2801728181 @default.
- W2801728181 hasRelatedWork W2961085424 @default.
- W2801728181 hasRelatedWork W3160244858 @default.
- W2801728181 hasRelatedWork W4286629047 @default.
- W2801728181 hasRelatedWork W4306321456 @default.
- W2801728181 hasRelatedWork W4306674287 @default.
- W2801728181 hasRelatedWork W4367178788 @default.
- W2801728181 hasRelatedWork W4224009465 @default.
- W2801728181 hasVolume "7" @default.
- W2801728181 isParatext "false" @default.
- W2801728181 isRetracted "false" @default.
- W2801728181 magId "2801728181" @default.
- W2801728181 workType "article" @default.