Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801873668> ?p ?o ?g. }
Showing items 1 to 64 of
64
with 100 items per page.
- W2801873668 abstract "This paper describes an investigation of machine-learning control for the supervisory control of building active and passive thermal storage inventory. Previous studies show that the utilization of either active or passive, or both can yield significant peak cooling load reduction and associated electrical demand and operational cost savings. In this study, a model-free learning control is investigated for the operation of electrically driven chilled water systems in heavy-mass commercial buildings. The reinforcement learning controller learns to operate the building and cooling plant optimally based on the feedback it receives from past control actions. The learning agent interacts with its environment by commanding the global zone temperature setpoints and TES charging/discharging rate. The controller extracts cues about the environment solely based on the reinforcement feedback it receives, which in this study is the monetary cost of each control action. No prediction or system model is required. Over time and by exploring the environment, the reinforcement learning controller establishes a statistical summary of plant operation, which is continuously updated as operation continues. This presented analysis revealed that learning control is a feasible methodology to find a near-optimal control strategy for exploiting the active and passive building thermal storage capacity, and also shows that the learning performance is affected by the dimensionality of the action and state space, the learning rate and several other factors. Moreover learning speed proved to be relatively low when dealing with tasks associated with large state and action spaces." @default.
- W2801873668 created "2018-05-17" @default.
- W2801873668 creator A5024621909 @default.
- W2801873668 creator A5071439301 @default.
- W2801873668 date "2005-01-01" @default.
- W2801873668 modified "2023-10-17" @default.
- W2801873668 title "Evaluation of Reinforcement Learning for Optimal Control of Building Active and Passive Thermal Storage Inventory" @default.
- W2801873668 doi "https://doi.org/10.1115/isec2005-76085" @default.
- W2801873668 hasPublicationYear "2005" @default.
- W2801873668 type Work @default.
- W2801873668 sameAs 2801873668 @default.
- W2801873668 citedByCount "2" @default.
- W2801873668 countsByYear W28018736682019 @default.
- W2801873668 countsByYear W28018736682021 @default.
- W2801873668 crossrefType "proceedings-article" @default.
- W2801873668 hasAuthorship W2801873668A5024621909 @default.
- W2801873668 hasAuthorship W2801873668A5071439301 @default.
- W2801873668 hasConcept C111030470 @default.
- W2801873668 hasConcept C126255220 @default.
- W2801873668 hasConcept C127413603 @default.
- W2801873668 hasConcept C154945302 @default.
- W2801873668 hasConcept C203479927 @default.
- W2801873668 hasConcept C2775924081 @default.
- W2801873668 hasConcept C33923547 @default.
- W2801873668 hasConcept C41008148 @default.
- W2801873668 hasConcept C6557445 @default.
- W2801873668 hasConcept C66938386 @default.
- W2801873668 hasConcept C67203356 @default.
- W2801873668 hasConcept C77967617 @default.
- W2801873668 hasConcept C86803240 @default.
- W2801873668 hasConcept C91575142 @default.
- W2801873668 hasConcept C97541855 @default.
- W2801873668 hasConceptScore W2801873668C111030470 @default.
- W2801873668 hasConceptScore W2801873668C126255220 @default.
- W2801873668 hasConceptScore W2801873668C127413603 @default.
- W2801873668 hasConceptScore W2801873668C154945302 @default.
- W2801873668 hasConceptScore W2801873668C203479927 @default.
- W2801873668 hasConceptScore W2801873668C2775924081 @default.
- W2801873668 hasConceptScore W2801873668C33923547 @default.
- W2801873668 hasConceptScore W2801873668C41008148 @default.
- W2801873668 hasConceptScore W2801873668C6557445 @default.
- W2801873668 hasConceptScore W2801873668C66938386 @default.
- W2801873668 hasConceptScore W2801873668C67203356 @default.
- W2801873668 hasConceptScore W2801873668C77967617 @default.
- W2801873668 hasConceptScore W2801873668C86803240 @default.
- W2801873668 hasConceptScore W2801873668C91575142 @default.
- W2801873668 hasConceptScore W2801873668C97541855 @default.
- W2801873668 hasLocation W28018736681 @default.
- W2801873668 hasOpenAccess W2801873668 @default.
- W2801873668 hasPrimaryLocation W28018736681 @default.
- W2801873668 hasRelatedWork W2801873668 @default.
- W2801873668 hasRelatedWork W2923653485 @default.
- W2801873668 hasRelatedWork W2952472710 @default.
- W2801873668 hasRelatedWork W2957776456 @default.
- W2801873668 hasRelatedWork W3139292734 @default.
- W2801873668 hasRelatedWork W3214623065 @default.
- W2801873668 hasRelatedWork W4224287422 @default.
- W2801873668 hasRelatedWork W4313305131 @default.
- W2801873668 hasRelatedWork W4319773215 @default.
- W2801873668 hasRelatedWork W4361026739 @default.
- W2801873668 isParatext "false" @default.
- W2801873668 isRetracted "false" @default.
- W2801873668 magId "2801873668" @default.
- W2801873668 workType "article" @default.