Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801902380> ?p ?o ?g. }
- W2801902380 endingPage "105" @default.
- W2801902380 startingPage "94" @default.
- W2801902380 abstract "Abstract Heterogeneity of multi-modal data is the key challenge for multimedia cross-modal retrieval. To solve this challenge, many approaches have been developed. As the mainstream, subspace learning based approaches focus on learning a latent shared subspace to measure similarities between cross-modal data, and have shown their remarkable performance in practical cross-modal retrieval tasks. However, most of the existing approaches are intrinsically identified with feature dimension reduction on different modalities in a shared subspace, unable to fundamentally resolve the heterogeneity issue well; therefore they often can not obtain satisfactory results as expected. As claimed in Hilbert space theory, different Hilbert spaces with the same dimension are isomorphic. Based on this premise, isomorphic mapping subspaces can be considered as a single space shared by multi-modal data. To this end, we in this paper propose a correlation-based cross-modal subspace learning model via kernel dependence maximization (KDM). Unlike most of the existing correlation-based subspace learning methods, the proposed KDM learns subspace representation for each modality by maximizing the kernel dependence (correlation) instead of directly maximizing the feature correlations between multi-modal data. Specifically, we first map multi-modal data into different Hilbert spaces but with the same dimension individually, then we calculate kernel matrix in each Hilbert space and measure the correlations between multi-modalities based on kernels. Experimental results have shown the effectiveness and competitiveness of the proposed KDM against the compared classic subspace learning approaches." @default.
- W2801902380 created "2018-05-17" @default.
- W2801902380 creator A5014712849 @default.
- W2801902380 creator A5028127027 @default.
- W2801902380 creator A5029124416 @default.
- W2801902380 creator A5086302674 @default.
- W2801902380 date "2018-10-01" @default.
- W2801902380 modified "2023-09-26" @default.
- W2801902380 title "Subspace learning by kernel dependence maximization for cross-modal retrieval" @default.
- W2801902380 cites W1925193522 @default.
- W2801902380 cites W1972490990 @default.
- W2801902380 cites W2041288440 @default.
- W2801902380 cites W2043929537 @default.
- W2801902380 cites W2047631354 @default.
- W2801902380 cites W2050460554 @default.
- W2801902380 cites W2052727801 @default.
- W2801902380 cites W2076455317 @default.
- W2801902380 cites W2138118304 @default.
- W2801902380 cites W2150600350 @default.
- W2801902380 cites W2169813655 @default.
- W2801902380 cites W2170653751 @default.
- W2801902380 cites W2211092169 @default.
- W2801902380 cites W2474425175 @default.
- W2801902380 cites W2623201052 @default.
- W2801902380 cites W2762383441 @default.
- W2801902380 cites W4237723258 @default.
- W2801902380 doi "https://doi.org/10.1016/j.neucom.2018.04.073" @default.
- W2801902380 hasPublicationYear "2018" @default.
- W2801902380 type Work @default.
- W2801902380 sameAs 2801902380 @default.
- W2801902380 citedByCount "12" @default.
- W2801902380 countsByYear W28019023802019 @default.
- W2801902380 countsByYear W28019023802020 @default.
- W2801902380 countsByYear W28019023802021 @default.
- W2801902380 countsByYear W28019023802022 @default.
- W2801902380 countsByYear W28019023802023 @default.
- W2801902380 crossrefType "journal-article" @default.
- W2801902380 hasAuthorship W2801902380A5014712849 @default.
- W2801902380 hasAuthorship W2801902380A5028127027 @default.
- W2801902380 hasAuthorship W2801902380A5029124416 @default.
- W2801902380 hasAuthorship W2801902380A5086302674 @default.
- W2801902380 hasConcept C11413529 @default.
- W2801902380 hasConcept C118615104 @default.
- W2801902380 hasConcept C122280245 @default.
- W2801902380 hasConcept C12267149 @default.
- W2801902380 hasConcept C12362212 @default.
- W2801902380 hasConcept C134517425 @default.
- W2801902380 hasConcept C138885662 @default.
- W2801902380 hasConcept C153180895 @default.
- W2801902380 hasConcept C154945302 @default.
- W2801902380 hasConcept C185592680 @default.
- W2801902380 hasConcept C188027245 @default.
- W2801902380 hasConcept C202444582 @default.
- W2801902380 hasConcept C2776401178 @default.
- W2801902380 hasConcept C32834561 @default.
- W2801902380 hasConcept C33676613 @default.
- W2801902380 hasConcept C33923547 @default.
- W2801902380 hasConcept C41008148 @default.
- W2801902380 hasConcept C41895202 @default.
- W2801902380 hasConcept C59404180 @default.
- W2801902380 hasConcept C62799726 @default.
- W2801902380 hasConcept C70518039 @default.
- W2801902380 hasConcept C71139939 @default.
- W2801902380 hasConcept C74193536 @default.
- W2801902380 hasConcept C80884492 @default.
- W2801902380 hasConceptScore W2801902380C11413529 @default.
- W2801902380 hasConceptScore W2801902380C118615104 @default.
- W2801902380 hasConceptScore W2801902380C122280245 @default.
- W2801902380 hasConceptScore W2801902380C12267149 @default.
- W2801902380 hasConceptScore W2801902380C12362212 @default.
- W2801902380 hasConceptScore W2801902380C134517425 @default.
- W2801902380 hasConceptScore W2801902380C138885662 @default.
- W2801902380 hasConceptScore W2801902380C153180895 @default.
- W2801902380 hasConceptScore W2801902380C154945302 @default.
- W2801902380 hasConceptScore W2801902380C185592680 @default.
- W2801902380 hasConceptScore W2801902380C188027245 @default.
- W2801902380 hasConceptScore W2801902380C202444582 @default.
- W2801902380 hasConceptScore W2801902380C2776401178 @default.
- W2801902380 hasConceptScore W2801902380C32834561 @default.
- W2801902380 hasConceptScore W2801902380C33676613 @default.
- W2801902380 hasConceptScore W2801902380C33923547 @default.
- W2801902380 hasConceptScore W2801902380C41008148 @default.
- W2801902380 hasConceptScore W2801902380C41895202 @default.
- W2801902380 hasConceptScore W2801902380C59404180 @default.
- W2801902380 hasConceptScore W2801902380C62799726 @default.
- W2801902380 hasConceptScore W2801902380C70518039 @default.
- W2801902380 hasConceptScore W2801902380C71139939 @default.
- W2801902380 hasConceptScore W2801902380C74193536 @default.
- W2801902380 hasConceptScore W2801902380C80884492 @default.
- W2801902380 hasLocation W28019023801 @default.
- W2801902380 hasOpenAccess W2801902380 @default.
- W2801902380 hasPrimaryLocation W28019023801 @default.
- W2801902380 hasRelatedWork W105047809 @default.
- W2801902380 hasRelatedWork W1591413801 @default.
- W2801902380 hasRelatedWork W2121507443 @default.
- W2801902380 hasRelatedWork W2125244435 @default.
- W2801902380 hasRelatedWork W2390650890 @default.
- W2801902380 hasRelatedWork W2900378925 @default.