Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801993607> ?p ?o ?g. }
- W2801993607 endingPage "48" @default.
- W2801993607 startingPage "32" @default.
- W2801993607 abstract "This paper presents an advanced Bayesian emulation-based approach (hereafter BEA) that allows a reduced number of analyses to be carried out to compute the probabilistic seismic response and fragility of buildings. The BEA, which is a version of kriging, uses a mean function as a first approximation of the expected Engineering Demand Parameter given Intensity Measure (EDP|IM) and then models the approximation errors as a Gaussian Process (GP). A main advantage of the BEA is its flexibility, as it does not impose a fixed mathematical form on the EDP|IM relationship (unlike other approaches such as the standard cloud method). In addition, BEA makes fewer assumptions than standard methods, and provides improved characterization of uncertainty. This paper first presents the BEA approach and then assesses its computational efficiency as compared to the standard cloud method. This is done through the creation of EDP|IM relationships and fragility functions using the outputs of nonlinear dynamic and nonlinear static analyses for two case-study buildings representing Pre- and Special-Code seismic vulnerability classes. The nonlinear dynamic and static analysis methods represent different levels of accuracy i.e., are of high and low fidelity, respectively. The BEA and standard cloud methods are compared in their ability to recreate three “pseudo-realities”, each represented by an artificially generated EDP|IM relationship derived from a large set of analysis runs. Several input configurations are tested, including, reduced sets of training inputs (analysis runs), training inputs of high and low fidelity, two sampling processes for these inputs (i.e., random and stratified sampling) and two different IM representations. The results demonstrate that BEA yields both an improved accuracy in terms of mean estimates, as well as smaller uncertainty bounds compared to the cloud method. The improved performance of the BEA is maintained for all “pseudo-realities” tested regardless of whether it is trained with high or low fidelity analysis data, with the improvement particularly pronounced in cases when the advanced IM INp is used. It is demonstrated that good accuracy can be achieved with BEA even with reduced samples, yielding a saving in 25% in number of analyses required to generate the EDP|IM relationship. Finally, the use of BEA drastically improves both the accuracy and efficiency of the resultant seismic fragility functions." @default.
- W2801993607 created "2018-05-17" @default.
- W2801993607 creator A5014133789 @default.
- W2801993607 creator A5059445960 @default.
- W2801993607 creator A5078236307 @default.
- W2801993607 date "2018-09-01" @default.
- W2801993607 modified "2023-10-14" @default.
- W2801993607 title "BEA: An efficient Bayesian emulation-based approach for probabilistic seismic response" @default.
- W2801993607 cites W1973333099 @default.
- W2801993607 cites W1975428745 @default.
- W2801993607 cites W2002168455 @default.
- W2801993607 cites W2018044188 @default.
- W2801993607 cites W2020137408 @default.
- W2801993607 cites W2024794595 @default.
- W2801993607 cites W2040396750 @default.
- W2801993607 cites W2044378166 @default.
- W2801993607 cites W2114694774 @default.
- W2801993607 cites W2116861156 @default.
- W2801993607 cites W2125107816 @default.
- W2801993607 cites W2129178344 @default.
- W2801993607 cites W2167996923 @default.
- W2801993607 cites W2320874775 @default.
- W2801993607 cites W2478487262 @default.
- W2801993607 doi "https://doi.org/10.1016/j.strusafe.2018.04.002" @default.
- W2801993607 hasPublicationYear "2018" @default.
- W2801993607 type Work @default.
- W2801993607 sameAs 2801993607 @default.
- W2801993607 citedByCount "8" @default.
- W2801993607 countsByYear W28019936072019 @default.
- W2801993607 countsByYear W28019936072020 @default.
- W2801993607 countsByYear W28019936072021 @default.
- W2801993607 countsByYear W28019936072022 @default.
- W2801993607 countsByYear W28019936072023 @default.
- W2801993607 crossrefType "journal-article" @default.
- W2801993607 hasAuthorship W2801993607A5014133789 @default.
- W2801993607 hasAuthorship W2801993607A5059445960 @default.
- W2801993607 hasAuthorship W2801993607A5078236307 @default.
- W2801993607 hasBestOaLocation W28019936072 @default.
- W2801993607 hasConcept C105795698 @default.
- W2801993607 hasConcept C107673813 @default.
- W2801993607 hasConcept C11413529 @default.
- W2801993607 hasConcept C119857082 @default.
- W2801993607 hasConcept C121332964 @default.
- W2801993607 hasConcept C126255220 @default.
- W2801993607 hasConcept C147789679 @default.
- W2801993607 hasConcept C149810388 @default.
- W2801993607 hasConcept C154945302 @default.
- W2801993607 hasConcept C158622935 @default.
- W2801993607 hasConcept C162324750 @default.
- W2801993607 hasConcept C163716315 @default.
- W2801993607 hasConcept C185592680 @default.
- W2801993607 hasConcept C2780598303 @default.
- W2801993607 hasConcept C33923547 @default.
- W2801993607 hasConcept C41008148 @default.
- W2801993607 hasConcept C49937458 @default.
- W2801993607 hasConcept C50522688 @default.
- W2801993607 hasConcept C61326573 @default.
- W2801993607 hasConcept C62520636 @default.
- W2801993607 hasConcept C80191262 @default.
- W2801993607 hasConcept C81692654 @default.
- W2801993607 hasConceptScore W2801993607C105795698 @default.
- W2801993607 hasConceptScore W2801993607C107673813 @default.
- W2801993607 hasConceptScore W2801993607C11413529 @default.
- W2801993607 hasConceptScore W2801993607C119857082 @default.
- W2801993607 hasConceptScore W2801993607C121332964 @default.
- W2801993607 hasConceptScore W2801993607C126255220 @default.
- W2801993607 hasConceptScore W2801993607C147789679 @default.
- W2801993607 hasConceptScore W2801993607C149810388 @default.
- W2801993607 hasConceptScore W2801993607C154945302 @default.
- W2801993607 hasConceptScore W2801993607C158622935 @default.
- W2801993607 hasConceptScore W2801993607C162324750 @default.
- W2801993607 hasConceptScore W2801993607C163716315 @default.
- W2801993607 hasConceptScore W2801993607C185592680 @default.
- W2801993607 hasConceptScore W2801993607C2780598303 @default.
- W2801993607 hasConceptScore W2801993607C33923547 @default.
- W2801993607 hasConceptScore W2801993607C41008148 @default.
- W2801993607 hasConceptScore W2801993607C49937458 @default.
- W2801993607 hasConceptScore W2801993607C50522688 @default.
- W2801993607 hasConceptScore W2801993607C61326573 @default.
- W2801993607 hasConceptScore W2801993607C62520636 @default.
- W2801993607 hasConceptScore W2801993607C80191262 @default.
- W2801993607 hasConceptScore W2801993607C81692654 @default.
- W2801993607 hasFunder F4320320286 @default.
- W2801993607 hasFunder F4320334627 @default.
- W2801993607 hasLocation W28019936071 @default.
- W2801993607 hasLocation W28019936072 @default.
- W2801993607 hasLocation W28019936073 @default.
- W2801993607 hasOpenAccess W2801993607 @default.
- W2801993607 hasPrimaryLocation W28019936071 @default.
- W2801993607 hasRelatedWork W115891841 @default.
- W2801993607 hasRelatedWork W2063381173 @default.
- W2801993607 hasRelatedWork W2089458270 @default.
- W2801993607 hasRelatedWork W2253386386 @default.
- W2801993607 hasRelatedWork W2318821300 @default.
- W2801993607 hasRelatedWork W2339587675 @default.
- W2801993607 hasRelatedWork W3141194637 @default.
- W2801993607 hasRelatedWork W3215477490 @default.
- W2801993607 hasRelatedWork W4283257099 @default.