Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801994328> ?p ?o ?g. }
- W2801994328 abstract "ABSTRACT Hepatitis C virus (HCV) infection is closely associated with type 2 diabetes. We reported that HCV infection induces the lysosomal degradation of hepatocyte nuclear factor 1 alpha (HNF-1α) via interaction with HCV nonstructural protein 5A (NS5A) protein, thereby suppressing GLUT2 gene expression. The molecular mechanisms of selective degradation of HNF-1α caused by NS5A are largely unknown. Chaperone-mediated autophagy (CMA) is a selective lysosomal degradation pathway. Here, we investigated whether CMA is involved in the selective degradation of HNF-1α in HCV-infected cells and observed that the pentapeptide spanning from amino acid (aa) 130 to aa 134 of HNF-1α matches the rule for the CMA-targeting motif, also known as KFERQ motif. A cytosolic chaperone protein, heat shock cognate protein of 70 kDa (HSC70), and a lysosomal membrane protein, lysosome-associated membrane protein type 2A (LAMP-2A), are key components of CMA. Immunoprecipitation analysis revealed that HNF-1α was coimmunoprecipitated with HSC70, whereas the Q130A mutation (mutation of Q to A at position 130) of HNF-1α disrupted the interaction with HSC70, indicating that the CMA-targeting motif of HNF-1α is important for the association with HSC70. Immunoprecipitation analysis revealed that increasing amounts of NS5A enhanced the association of HNF-1α with HSC70. To determine whether LAMP-2A plays a role in the degradation of HNF-1α protein, we knocked down LAMP-2A mRNA by RNA interference; this knockdown by small interfering RNA (siRNA) recovered the level of HNF-1α protein in HCV J6/JFH1-infected cells. This result suggests that LAMP-2A is required for the degradation of HNF-1α. Immunofluorescence study revealed colocalization of NS5A and HNF-1α in the lysosome. Based on our findings, we propose that HCV NS5A interacts with HSC70 and recruits HSC70 to HNF-1α, thereby promoting the lysosomal degradation of HNF-1α via CMA. IMPORTANCE Many viruses use a protein degradation system, such as the ubiquitin-proteasome pathway or the autophagy pathway, for facilitating viral propagation and viral pathogenesis. We investigated the mechanistic details of the selective lysosomal degradation of hepatocyte nuclear factor 1 alpha (HNF-1α) induced by hepatitis C virus (HCV) NS5A protein. Using site-directed mutagenesis, we demonstrated that HNF-1α contains a pentapeptide chaperone-mediated autophagy (CMA)-targeting motif within the POU-specific domain of HNF-1α. The CMA-targeting motif is important for the association with HSC70. LAMP-2A is required for degradation of HNF-1α caused by NS5A. We propose that HCV NS5A interacts with HSC70, a key component of the CMA machinery, and recruits HSC70 to HNF-1α to target HNF-1α for CMA-mediated lysosomal degradation, thereby facilitating HCV pathogenesis. We discovered a role of HCV NS5A in CMA-dependent degradation of HNF-1α. Our results may lead to a better understanding of the role of CMA in the pathogenesis of HCV." @default.
- W2801994328 created "2018-05-17" @default.
- W2801994328 creator A5003936795 @default.
- W2801994328 creator A5008491370 @default.
- W2801994328 creator A5011746724 @default.
- W2801994328 creator A5046387503 @default.
- W2801994328 creator A5046522736 @default.
- W2801994328 creator A5058116773 @default.
- W2801994328 date "2018-07-01" @default.
- W2801994328 modified "2023-10-15" @default.
- W2801994328 title "Hepatitis C Virus NS5A Protein Promotes the Lysosomal Degradation of Hepatocyte Nuclear Factor 1α via Chaperone-Mediated Autophagy" @default.
- W2801994328 cites W1542947565 @default.
- W2801994328 cites W1845621716 @default.
- W2801994328 cites W1901942272 @default.
- W2801994328 cites W1968322176 @default.
- W2801994328 cites W1971023090 @default.
- W2801994328 cites W1972415146 @default.
- W2801994328 cites W1978180866 @default.
- W2801994328 cites W1981541420 @default.
- W2801994328 cites W2003579943 @default.
- W2801994328 cites W2003682019 @default.
- W2801994328 cites W2019878519 @default.
- W2801994328 cites W2020503912 @default.
- W2801994328 cites W2021919397 @default.
- W2801994328 cites W2022964430 @default.
- W2801994328 cites W2027676918 @default.
- W2801994328 cites W2039764712 @default.
- W2801994328 cites W2070534507 @default.
- W2801994328 cites W2078887917 @default.
- W2801994328 cites W2089551665 @default.
- W2801994328 cites W2092310066 @default.
- W2801994328 cites W2096043313 @default.
- W2801994328 cites W2096328031 @default.
- W2801994328 cites W2114008462 @default.
- W2801994328 cites W2117084310 @default.
- W2801994328 cites W2117695104 @default.
- W2801994328 cites W2121481738 @default.
- W2801994328 cites W2125422626 @default.
- W2801994328 cites W2129065418 @default.
- W2801994328 cites W2129519532 @default.
- W2801994328 cites W2129792417 @default.
- W2801994328 cites W2133548029 @default.
- W2801994328 cites W2134312738 @default.
- W2801994328 cites W2134737692 @default.
- W2801994328 cites W2146565556 @default.
- W2801994328 cites W2147126871 @default.
- W2801994328 cites W2150368001 @default.
- W2801994328 cites W2150802339 @default.
- W2801994328 cites W2151898297 @default.
- W2801994328 cites W2161680561 @default.
- W2801994328 cites W2342728829 @default.
- W2801994328 cites W2406786241 @default.
- W2801994328 cites W2573232933 @default.
- W2801994328 cites W2620447300 @default.
- W2801994328 cites W2724782020 @default.
- W2801994328 cites W2742886739 @default.
- W2801994328 cites W291313901 @default.
- W2801994328 cites W2126689185 @default.
- W2801994328 doi "https://doi.org/10.1128/jvi.00639-18" @default.
- W2801994328 hasPubMedCentralId "https://www.ncbi.nlm.nih.gov/pmc/articles/6002715" @default.
- W2801994328 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29695419" @default.
- W2801994328 hasPublicationYear "2018" @default.
- W2801994328 type Work @default.
- W2801994328 sameAs 2801994328 @default.
- W2801994328 citedByCount "17" @default.
- W2801994328 countsByYear W28019943282018 @default.
- W2801994328 countsByYear W28019943282019 @default.
- W2801994328 countsByYear W28019943282020 @default.
- W2801994328 countsByYear W28019943282021 @default.
- W2801994328 countsByYear W28019943282022 @default.
- W2801994328 countsByYear W28019943282023 @default.
- W2801994328 crossrefType "journal-article" @default.
- W2801994328 hasAuthorship W2801994328A5003936795 @default.
- W2801994328 hasAuthorship W2801994328A5008491370 @default.
- W2801994328 hasAuthorship W2801994328A5011746724 @default.
- W2801994328 hasAuthorship W2801994328A5046387503 @default.
- W2801994328 hasAuthorship W2801994328A5046522736 @default.
- W2801994328 hasAuthorship W2801994328A5058116773 @default.
- W2801994328 hasBestOaLocation W28019943281 @default.
- W2801994328 hasConcept C102747710 @default.
- W2801994328 hasConcept C104317684 @default.
- W2801994328 hasConcept C142724271 @default.
- W2801994328 hasConcept C153911025 @default.
- W2801994328 hasConcept C159047783 @default.
- W2801994328 hasConcept C166703698 @default.
- W2801994328 hasConcept C173396325 @default.
- W2801994328 hasConcept C2522874641 @default.
- W2801994328 hasConcept C2775962898 @default.
- W2801994328 hasConcept C2776408679 @default.
- W2801994328 hasConcept C2777103181 @default.
- W2801994328 hasConcept C2781463415 @default.
- W2801994328 hasConcept C2992195973 @default.
- W2801994328 hasConcept C55493867 @default.
- W2801994328 hasConcept C57581600 @default.
- W2801994328 hasConcept C67705224 @default.
- W2801994328 hasConcept C71829478 @default.
- W2801994328 hasConcept C71924100 @default.
- W2801994328 hasConcept C79879829 @default.
- W2801994328 hasConcept C86803240 @default.
- W2801994328 hasConcept C95444343 @default.