Matches in SemOpenAlex for { <https://semopenalex.org/work/W2801996267> ?p ?o ?g. }
- W2801996267 endingPage "329" @default.
- W2801996267 startingPage "319" @default.
- W2801996267 abstract "Long- and short-term exposure to PM2.5 is of great concern in China due to its adverse population health effects. Characteristic of the severity of the situation in China is that in the Jing-Jin-Ji region considered in this work a total of 2725 excess deaths have been attributed to short-term PM2.5 exposure during the period January 10-31, 2013. Technically, the processing of large space-time PM2.5 datasets and the mapping of the space-time distribution of PM2.5 concentrations often constitute high-cost projects. To address this situation, we propose a synthetic modeling framework based on the integration of (a) the Bayesian maximum entropy method that assimilates auxiliary information from land-use regression and artificial neural network (ANN) model outputs based on PM2.5 monitoring, satellite remote sensing data, land use and geographical records, with (b) a space-time projection technique that transforms the PM2.5 concentration values from the original spatiotemporal domain onto a spatial domain that moves along the direction of the PM2.5 velocity spread. An interesting methodological feature of the synthetic approach is that its components (methods or models) are complementary, i.e., one component can compensate for the occasional limitations of another component. Insight is gained in terms of a PM2.5 case study covering the severe haze Jing-Jin-Ji region during October 1-31, 2015. The proposed synthetic approach explicitly accounted for physical space-time dependencies of the PM2.5 distribution. Moreover, the assimilation of auxiliary information and the dimensionality reduction achieved by the synthetic approach produced rather impressive results: It generated PM2.5 concentration maps with low estimation uncertainty (even at counties and villages far away from the monitoring stations, whereas during the haze periods the uncertainty reduction was over 50% compared to standard PM2.5 mapping techniques); and it also proved to be computationally very efficient (the reduction in computational time was over 20% compared to standard mapping techniques)." @default.
- W2801996267 created "2018-05-17" @default.
- W2801996267 creator A5062894234 @default.
- W2801996267 creator A5085867269 @default.
- W2801996267 date "2018-09-01" @default.
- W2801996267 modified "2023-10-17" @default.
- W2801996267 title "Space-time PM2.5 mapping in the severe haze region of Jing-Jin-Ji (China) using a synthetic approach" @default.
- W2801996267 cites W1498436455 @default.
- W2801996267 cites W1510933668 @default.
- W2801996267 cites W1619499024 @default.
- W2801996267 cites W1861454313 @default.
- W2801996267 cites W1862113676 @default.
- W2801996267 cites W1965683536 @default.
- W2801996267 cites W1967297182 @default.
- W2801996267 cites W1970551614 @default.
- W2801996267 cites W1977177161 @default.
- W2801996267 cites W1977469191 @default.
- W2801996267 cites W1980211493 @default.
- W2801996267 cites W1985568175 @default.
- W2801996267 cites W1993073693 @default.
- W2801996267 cites W2004348828 @default.
- W2801996267 cites W2011909531 @default.
- W2801996267 cites W2016579786 @default.
- W2801996267 cites W2017587036 @default.
- W2801996267 cites W2029401079 @default.
- W2801996267 cites W2031332288 @default.
- W2801996267 cites W2031528200 @default.
- W2801996267 cites W2031888471 @default.
- W2801996267 cites W2037559905 @default.
- W2801996267 cites W2046651358 @default.
- W2801996267 cites W2047607205 @default.
- W2801996267 cites W2053581743 @default.
- W2801996267 cites W2062581418 @default.
- W2801996267 cites W2066544083 @default.
- W2801996267 cites W2073032197 @default.
- W2801996267 cites W2093049120 @default.
- W2801996267 cites W2108082894 @default.
- W2801996267 cites W2110673467 @default.
- W2801996267 cites W2131951021 @default.
- W2801996267 cites W2158143121 @default.
- W2801996267 cites W2163786338 @default.
- W2801996267 cites W2165411636 @default.
- W2801996267 cites W2168634228 @default.
- W2801996267 cites W2271929130 @default.
- W2801996267 cites W2284873887 @default.
- W2801996267 cites W2297827415 @default.
- W2801996267 cites W2312602772 @default.
- W2801996267 cites W2320453122 @default.
- W2801996267 cites W2323118751 @default.
- W2801996267 cites W2323483937 @default.
- W2801996267 cites W2334392363 @default.
- W2801996267 cites W2399184460 @default.
- W2801996267 cites W2497200023 @default.
- W2801996267 cites W2516758599 @default.
- W2801996267 cites W2755772138 @default.
- W2801996267 cites W2769787388 @default.
- W2801996267 cites W2776069591 @default.
- W2801996267 cites W2779878362 @default.
- W2801996267 cites W4240659544 @default.
- W2801996267 cites W853829732 @default.
- W2801996267 doi "https://doi.org/10.1016/j.envpol.2018.04.092" @default.
- W2801996267 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/29751328" @default.
- W2801996267 hasPublicationYear "2018" @default.
- W2801996267 type Work @default.
- W2801996267 sameAs 2801996267 @default.
- W2801996267 citedByCount "31" @default.
- W2801996267 countsByYear W28019962672018 @default.
- W2801996267 countsByYear W28019962672019 @default.
- W2801996267 countsByYear W28019962672020 @default.
- W2801996267 countsByYear W28019962672021 @default.
- W2801996267 countsByYear W28019962672022 @default.
- W2801996267 countsByYear W28019962672023 @default.
- W2801996267 crossrefType "journal-article" @default.
- W2801996267 hasAuthorship W2801996267A5062894234 @default.
- W2801996267 hasAuthorship W2801996267A5085867269 @default.
- W2801996267 hasConcept C111030470 @default.
- W2801996267 hasConcept C11413529 @default.
- W2801996267 hasConcept C124101348 @default.
- W2801996267 hasConcept C144024400 @default.
- W2801996267 hasConcept C149923435 @default.
- W2801996267 hasConcept C153294291 @default.
- W2801996267 hasConcept C154945302 @default.
- W2801996267 hasConcept C160920958 @default.
- W2801996267 hasConcept C205649164 @default.
- W2801996267 hasConcept C27438332 @default.
- W2801996267 hasConcept C2908647359 @default.
- W2801996267 hasConcept C39432304 @default.
- W2801996267 hasConcept C41008148 @default.
- W2801996267 hasConcept C50644808 @default.
- W2801996267 hasConcept C79974267 @default.
- W2801996267 hasConceptScore W2801996267C111030470 @default.
- W2801996267 hasConceptScore W2801996267C11413529 @default.
- W2801996267 hasConceptScore W2801996267C124101348 @default.
- W2801996267 hasConceptScore W2801996267C144024400 @default.
- W2801996267 hasConceptScore W2801996267C149923435 @default.
- W2801996267 hasConceptScore W2801996267C153294291 @default.
- W2801996267 hasConceptScore W2801996267C154945302 @default.
- W2801996267 hasConceptScore W2801996267C160920958 @default.