Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802022101> ?p ?o ?g. }
- W2802022101 endingPage "49" @default.
- W2802022101 startingPage "1" @default.
- W2802022101 abstract "An important task in network analysis is the detection of anomalous events in a network time series. These events could merely be times of interest in the network timeline or they could be examples of malicious activity or network malfunction. Hypothesis testing using network statistics to summarize the behavior of the network provides a robust framework for the anomaly detection decision process. Unfortunately, choosing network statistics that are dependent on confounding factors like the total number of nodes or edges can lead to incorrect conclusions (e.g., false positives and false negatives). In this article, we describe the challenges that face anomaly detection in dynamic network streams regarding confounding factors. We also provide two solutions to avoiding error due to confounding factors: the first is a randomization testing method that controls for confounding factors, and the second is a set of size-consistent network statistics that avoid confounding due to the most common factors, edge count and node count." @default.
- W2802022101 created "2018-05-17" @default.
- W2802022101 creator A5055448715 @default.
- W2802022101 creator A5064439579 @default.
- W2802022101 creator A5084693605 @default.
- W2802022101 date "2018-04-16" @default.
- W2802022101 modified "2023-10-16" @default.
- W2802022101 title "Designing Size Consistent Statistics for Accurate Anomaly Detection in Dynamic Networks" @default.
- W2802022101 cites W1565891772 @default.
- W2802022101 cites W1965893610 @default.
- W2802022101 cites W1972510122 @default.
- W2802022101 cites W1975937000 @default.
- W2802022101 cites W1980331354 @default.
- W2802022101 cites W2004824191 @default.
- W2802022101 cites W2008714868 @default.
- W2802022101 cites W2018120626 @default.
- W2802022101 cites W2045540672 @default.
- W2802022101 cites W2053593718 @default.
- W2802022101 cites W2057685268 @default.
- W2802022101 cites W2064568176 @default.
- W2802022101 cites W2082378938 @default.
- W2802022101 cites W2087964066 @default.
- W2802022101 cites W2089554624 @default.
- W2802022101 cites W2093033099 @default.
- W2802022101 cites W2097147952 @default.
- W2802022101 cites W2099815494 @default.
- W2802022101 cites W2109742433 @default.
- W2802022101 cites W2110461002 @default.
- W2802022101 cites W2126296671 @default.
- W2802022101 cites W2129259525 @default.
- W2802022101 cites W2135198476 @default.
- W2802022101 cites W2136676173 @default.
- W2802022101 cites W2137181315 @default.
- W2802022101 cites W2140273660 @default.
- W2802022101 cites W2149910108 @default.
- W2802022101 cites W2165132717 @default.
- W2802022101 cites W2170413097 @default.
- W2802022101 cites W2170643162 @default.
- W2802022101 cites W2171543215 @default.
- W2802022101 cites W2180060901 @default.
- W2802022101 cites W2432978112 @default.
- W2802022101 cites W2556758239 @default.
- W2802022101 cites W2769982945 @default.
- W2802022101 cites W3012018142 @default.
- W2802022101 cites W4255106604 @default.
- W2802022101 doi "https://doi.org/10.1145/3185059" @default.
- W2802022101 hasPublicationYear "2018" @default.
- W2802022101 type Work @default.
- W2802022101 sameAs 2802022101 @default.
- W2802022101 citedByCount "5" @default.
- W2802022101 countsByYear W28020221012019 @default.
- W2802022101 countsByYear W28020221012020 @default.
- W2802022101 countsByYear W28020221012021 @default.
- W2802022101 countsByYear W28020221012022 @default.
- W2802022101 crossrefType "journal-article" @default.
- W2802022101 hasAuthorship W2802022101A5055448715 @default.
- W2802022101 hasAuthorship W2802022101A5064439579 @default.
- W2802022101 hasAuthorship W2802022101A5084693605 @default.
- W2802022101 hasBestOaLocation W28020221011 @default.
- W2802022101 hasConcept C105795698 @default.
- W2802022101 hasConcept C112789634 @default.
- W2802022101 hasConcept C124101348 @default.
- W2802022101 hasConcept C127413603 @default.
- W2802022101 hasConcept C154945302 @default.
- W2802022101 hasConcept C33923547 @default.
- W2802022101 hasConcept C41008148 @default.
- W2802022101 hasConcept C62611344 @default.
- W2802022101 hasConcept C64869954 @default.
- W2802022101 hasConcept C66938386 @default.
- W2802022101 hasConcept C739882 @default.
- W2802022101 hasConcept C77350462 @default.
- W2802022101 hasConceptScore W2802022101C105795698 @default.
- W2802022101 hasConceptScore W2802022101C112789634 @default.
- W2802022101 hasConceptScore W2802022101C124101348 @default.
- W2802022101 hasConceptScore W2802022101C127413603 @default.
- W2802022101 hasConceptScore W2802022101C154945302 @default.
- W2802022101 hasConceptScore W2802022101C33923547 @default.
- W2802022101 hasConceptScore W2802022101C41008148 @default.
- W2802022101 hasConceptScore W2802022101C62611344 @default.
- W2802022101 hasConceptScore W2802022101C64869954 @default.
- W2802022101 hasConceptScore W2802022101C66938386 @default.
- W2802022101 hasConceptScore W2802022101C739882 @default.
- W2802022101 hasConceptScore W2802022101C77350462 @default.
- W2802022101 hasIssue "4" @default.
- W2802022101 hasLocation W28020221011 @default.
- W2802022101 hasLocation W28020221012 @default.
- W2802022101 hasOpenAccess W2802022101 @default.
- W2802022101 hasPrimaryLocation W28020221011 @default.
- W2802022101 hasRelatedWork W1557094818 @default.
- W2802022101 hasRelatedWork W1973412793 @default.
- W2802022101 hasRelatedWork W2099261052 @default.
- W2802022101 hasRelatedWork W2183246718 @default.
- W2802022101 hasRelatedWork W2951146195 @default.
- W2802022101 hasRelatedWork W3123215897 @default.
- W2802022101 hasRelatedWork W4206552806 @default.
- W2802022101 hasRelatedWork W4214835788 @default.
- W2802022101 hasRelatedWork W4226316650 @default.
- W2802022101 hasRelatedWork W4292605373 @default.