Matches in SemOpenAlex for { <https://semopenalex.org/work/W2802098852> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W2802098852 abstract "This paper considers target characterization and recognition in radar images with keypoint-based local descriptor. Most of the preceding works rely on the global features or raw intensity values, and hence produce the limited recognition performance. Moreover, the global features are sensitive to the real-world sources of variability, such as aspect view, configu-ration, and incidence angle changes, clutter, articulation, and occlusion. Keypoint-based local descriptor was developed as a powerful strategy to address invariance to contrast change and geometric distortion. This property inspires us to investigate whether the family of local features are relevant for radar target recognition. Most of the preceding works typically devote to finding the correspondences between a collected image and a reference one. The representative applications include image register and change detection. Little work was pursued to target recognition in SAR images. This is because the huge number of local descriptors resulting from radar images make the computational cost and memory consumption unacceptable. To handle the problems, this paper develops two families of methods. The proposed methods are used to achieve target recognition by means of local descriptors. Our first solver refers to building multiple linear regression models, and addresses the problem by the theory of sparse representation. The second scheme rebuilds a new feature by the feature quantization skill, from which the inference can be drawn. Multiple comparative studies are pursued to verify the performance of detectors and descriptors popularly used. The source code was publicly released on https://ganggangdong.github.io/homepage/." @default.
- W2802098852 created "2018-05-17" @default.
- W2802098852 creator A5034852790 @default.
- W2802098852 creator A5035508615 @default.
- W2802098852 date "2018-05-07" @default.
- W2802098852 modified "2023-10-14" @default.
- W2802098852 title "Target Recognition in SAR Image via Keypoint based Local Descriptor—Foundation" @default.
- W2802098852 cites W1571809481 @default.
- W2802098852 cites W1606858007 @default.
- W2802098852 cites W2013203016 @default.
- W2802098852 cites W2061061585 @default.
- W2802098852 cites W2079700955 @default.
- W2802098852 cites W2097018403 @default.
- W2802098852 cites W2099747208 @default.
- W2802098852 cites W2104853049 @default.
- W2802098852 cites W2109200236 @default.
- W2802098852 cites W2111308925 @default.
- W2802098852 cites W2117581466 @default.
- W2802098852 cites W2124386111 @default.
- W2802098852 cites W2124648367 @default.
- W2802098852 cites W2129638195 @default.
- W2802098852 cites W2129812935 @default.
- W2802098852 cites W2135269154 @default.
- W2802098852 cites W2142532318 @default.
- W2802098852 cites W2143668817 @default.
- W2802098852 cites W2147228188 @default.
- W2802098852 cites W2147238549 @default.
- W2802098852 cites W2149918662 @default.
- W2802098852 cites W2150486153 @default.
- W2802098852 cites W2151103935 @default.
- W2802098852 cites W2153320667 @default.
- W2802098852 cites W2162915993 @default.
- W2802098852 cites W2163380389 @default.
- W2802098852 cites W2170282673 @default.
- W2802098852 cites W2171235719 @default.
- W2802098852 cites W2177274842 @default.
- W2802098852 cites W2269648248 @default.
- W2802098852 cites W2292481059 @default.
- W2802098852 cites W2410591237 @default.
- W2802098852 cites W2575186064 @default.
- W2802098852 cites W2596473454 @default.
- W2802098852 cites W2730249686 @default.
- W2802098852 cites W2753007557 @default.
- W2802098852 cites W2186233030 @default.
- W2802098852 doi "https://doi.org/10.20944/preprints201805.0116.v1" @default.
- W2802098852 hasPublicationYear "2018" @default.
- W2802098852 type Work @default.
- W2802098852 sameAs 2802098852 @default.
- W2802098852 citedByCount "0" @default.
- W2802098852 crossrefType "posted-content" @default.
- W2802098852 hasAuthorship W2802098852A5034852790 @default.
- W2802098852 hasAuthorship W2802098852A5035508615 @default.
- W2802098852 hasBestOaLocation W28020988521 @default.
- W2802098852 hasConcept C138885662 @default.
- W2802098852 hasConcept C153180895 @default.
- W2802098852 hasConcept C154945302 @default.
- W2802098852 hasConcept C2776401178 @default.
- W2802098852 hasConcept C31972630 @default.
- W2802098852 hasConcept C41008148 @default.
- W2802098852 hasConcept C41895202 @default.
- W2802098852 hasConceptScore W2802098852C138885662 @default.
- W2802098852 hasConceptScore W2802098852C153180895 @default.
- W2802098852 hasConceptScore W2802098852C154945302 @default.
- W2802098852 hasConceptScore W2802098852C2776401178 @default.
- W2802098852 hasConceptScore W2802098852C31972630 @default.
- W2802098852 hasConceptScore W2802098852C41008148 @default.
- W2802098852 hasConceptScore W2802098852C41895202 @default.
- W2802098852 hasLocation W28020988521 @default.
- W2802098852 hasLocation W28020988522 @default.
- W2802098852 hasLocation W28020988523 @default.
- W2802098852 hasOpenAccess W2802098852 @default.
- W2802098852 hasPrimaryLocation W28020988521 @default.
- W2802098852 hasRelatedWork W1891287906 @default.
- W2802098852 hasRelatedWork W1969923398 @default.
- W2802098852 hasRelatedWork W2036807459 @default.
- W2802098852 hasRelatedWork W2058170566 @default.
- W2802098852 hasRelatedWork W2166024367 @default.
- W2802098852 hasRelatedWork W2229312674 @default.
- W2802098852 hasRelatedWork W2755342338 @default.
- W2802098852 hasRelatedWork W2772917594 @default.
- W2802098852 hasRelatedWork W2775347418 @default.
- W2802098852 hasRelatedWork W3116076068 @default.
- W2802098852 isParatext "false" @default.
- W2802098852 isRetracted "false" @default.
- W2802098852 magId "2802098852" @default.
- W2802098852 workType "article" @default.